Cho hình vuông ABCD có hai đường chéo cắt nhau tai O .Một đường thẳng kẻ qua A cắt BC tại M và cắt đường thẳng CD tại N . Gọi K là giao của OM,BN. CMR: CK vuông góc với BN.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
14 tháng 7 2023
a: ABCD là hình vuông
=>AE là phân giác của góc BAD
=>góc ABE=góc DAE=45 độ
Xét ΔABE và ΔABD có
góc ABE chung
góc ADE=góc ABE=45 độ
=>ΔABE đồng dạng với ΔDBA
=>AB/BD=BE/AB
=>AB^2=BD*BE
b: góc EBM=góc MBA+góc ABE=135 độ
góc NDB=góc NDA+góc ADB=135 độ
=>góc EBM=góc NDB
Xét ΔBEM và ΔDNB có
góc EBM=góc NDB
góc BEM=góc DNB
=>ΔBEM đồng dạng với ΔDNB
Đặt độ dài mỗi cạnh của hình vuông ABCD là a (a\(\in\)R+)
Theo ĐL Thales, ta có có tỉ lệ sau: \(\frac{BC}{BM}=\frac{AN}{AM}\); \(\frac{ND}{DC}=\frac{AN}{AM}\)
\(\Rightarrow\frac{BC}{BM}=\frac{ND}{DC}\Rightarrow BM.ND=BC.DC=a^2\)(1)
Sau đó chứng minh \(\Delta\)AOD ~ \(\Delta\)DAB (g.g) => \(\frac{AO}{AD}=\frac{AD}{BD}\)\(\Rightarrow AO.BD=AD^2=a^2\)
hay \(BO.BD=a^2\)(2)
Từ (1) và (2) => \(BM.ND=BO.BD\)\(\Rightarrow\frac{BM}{BD}=\frac{BO}{ND}\)
Ta có: \(\widehat{MBO}=\widehat{ABO}+\widehat{MBA}=135^0\), \(\widehat{BDN}=\widehat{ADO}+\widehat{NDA}=135^0\)
\(\Rightarrow\widehat{MBO}=\widehat{BDN}\)
Xét \(\Delta\)MBO và \(\Delta\)BDN: \(\widehat{MBO}=\widehat{BDN};\) \(\frac{BM}{BD}=\frac{BO}{ND}\)(cmt)
=> \(\Delta\)MBO ~ \(\Delta\)BDN (c.g.c) => \(\widehat{M_1}=\widehat{B_1}\)
Ta thấy \(\widehat{BKO}\)là góc ngoài của tam giác MBK
=> \(\widehat{BKO}=\widehat{M_1}+\widehat{MBK}=\widehat{B_1}+\widehat{MBK}=\widehat{MBO}=135^0\)\(\Rightarrow\)\(\widehat{MKB}=45^0\)(Kề bù)
\(\Rightarrow\widehat{MKB}=\widehat{MCO}=45^0\)
\(\Rightarrow\Delta\)MKB ~ \(\Delta\)MCO (g.g) => \(\frac{BK}{OC}=\frac{MK}{MC}\)hay \(\frac{BK}{OB}=\frac{MK}{MC}\)
Xét \(\Delta\)KBO và \(\Delta\)KMC: \(\widehat{B_1}=\widehat{M_1}\);\(\frac{BK}{OB}=\frac{MK}{MC}\)\(\Rightarrow\widehat{BKO}=\widehat{MKC}\).
Mà \(\widehat{BKO}=135^0\)(cmt)\(\Rightarrow\widehat{MKC}=135^0\)
Lại có: \(\widehat{MKC}=\widehat{MKB}+\widehat{BKC}\)
\(\Rightarrow\widehat{BKC}=\widehat{MKC}-\widehat{MKB}=135^0-45^0=90^0\)(Do ^MKB=450(cmt))
=> \(CK\perp BN\)(đpcm).