K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
14 tháng 7 2023
a: ABCD là hình vuông
=>AE là phân giác của góc BAD
=>góc ABE=góc DAE=45 độ
Xét ΔABE và ΔABD có
góc ABE chung
góc ADE=góc ABE=45 độ
=>ΔABE đồng dạng với ΔDBA
=>AB/BD=BE/AB
=>AB^2=BD*BE
b: góc EBM=góc MBA+góc ABE=135 độ
góc NDB=góc NDA+góc ADB=135 độ
=>góc EBM=góc NDB
Xét ΔBEM và ΔDNB có
góc EBM=góc NDB
góc BEM=góc DNB
=>ΔBEM đồng dạng với ΔDNB
Đặt độ dài mỗi cạnh của hình vuông ABCD là a (a\(\in\)R+)
Theo ĐL Thales, ta có có tỉ lệ sau: \(\frac{BC}{BM}=\frac{AN}{AM}\); \(\frac{ND}{DC}=\frac{AN}{AM}\)
\(\Rightarrow\frac{BC}{BM}=\frac{ND}{DC}\Rightarrow BM.ND=BC.DC=a^2\)(1)
Sau đó chứng minh \(\Delta\)AOD ~ \(\Delta\)DAB (g.g) => \(\frac{AO}{AD}=\frac{AD}{BD}\)\(\Rightarrow AO.BD=AD^2=a^2\)
hay \(BO.BD=a^2\)(2)
Từ (1) và (2) => \(BM.ND=BO.BD\)\(\Rightarrow\frac{BM}{BD}=\frac{BO}{ND}\)
Ta có: \(\widehat{MBO}=\widehat{ABO}+\widehat{MBA}=135^0\), \(\widehat{BDN}=\widehat{ADO}+\widehat{NDA}=135^0\)
\(\Rightarrow\widehat{MBO}=\widehat{BDN}\)
Xét \(\Delta\)MBO và \(\Delta\)BDN: \(\widehat{MBO}=\widehat{BDN};\) \(\frac{BM}{BD}=\frac{BO}{ND}\)(cmt)
=> \(\Delta\)MBO ~ \(\Delta\)BDN (c.g.c) => \(\widehat{M_1}=\widehat{B_1}\)
Ta thấy \(\widehat{BKO}\)là góc ngoài của tam giác MBK
=> \(\widehat{BKO}=\widehat{M_1}+\widehat{MBK}=\widehat{B_1}+\widehat{MBK}=\widehat{MBO}=135^0\)\(\Rightarrow\)\(\widehat{MKB}=45^0\)(Kề bù)
\(\Rightarrow\widehat{MKB}=\widehat{MCO}=45^0\)
\(\Rightarrow\Delta\)MKB ~ \(\Delta\)MCO (g.g) => \(\frac{BK}{OC}=\frac{MK}{MC}\)hay \(\frac{BK}{OB}=\frac{MK}{MC}\)
Xét \(\Delta\)KBO và \(\Delta\)KMC: \(\widehat{B_1}=\widehat{M_1}\);\(\frac{BK}{OB}=\frac{MK}{MC}\)\(\Rightarrow\widehat{BKO}=\widehat{MKC}\).
Mà \(\widehat{BKO}=135^0\)(cmt)\(\Rightarrow\widehat{MKC}=135^0\)
Lại có: \(\widehat{MKC}=\widehat{MKB}+\widehat{BKC}\)
\(\Rightarrow\widehat{BKC}=\widehat{MKC}-\widehat{MKB}=135^0-45^0=90^0\)(Do ^MKB=450(cmt))
=> \(CK\perp BN\)(đpcm).