K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2018

A=2/3 . 5/6 . 9/10 . 14/15 . 20/21 . 27/28

A= 9/14

20 tháng 7 2021

a) Đặt A= \(\dfrac{1}{3}+\dfrac{1}{6}+...+\dfrac{1}{36}\)

\(\dfrac{1}{2}\)A=\(\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{72}\)

\(\dfrac{1}{2}\)A=\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}\)

\(\dfrac{1}{2}\)A=\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}\)

\(\dfrac{1}{2}\)A=\(\dfrac{1}{2}-\dfrac{1}{9}\)

\(\dfrac{1}{2}\)A=\(\dfrac{7}{18}\)

A=\(\dfrac{7}{9}\)

 

 

19 tháng 5 2023

A =          1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{6}\) +  \(\dfrac{1}{10}\) + \(\dfrac{1}{15}\) + \(\dfrac{1}{21}\) + \(\dfrac{1}{28}\) + \(\dfrac{1}{36}\)

A = 2\(\times\) ( \(\dfrac{1}{2}\)  +  \(\dfrac{1}{6}\) + \(\dfrac{1}{12}\) +  \(\dfrac{1}{20}\) + \(\dfrac{1}{30}\) + \(\dfrac{1}{42}\) + \(\dfrac{1}{56}\)\(\dfrac{1}{72}\))

A =2\(\times\)\(\dfrac{1}{1\times2}\)+\(\dfrac{1}{2\times3}\)+\(\dfrac{1}{3\times4}\)+\(\dfrac{1}{4\times5}\)+\(\dfrac{1}{5\times6}\)+\(\dfrac{1}{6\times7}\)+\(\dfrac{1}{7\times8}\)+\(\dfrac{1}{8\times9}\))

A = 2 \(\times\) ( \(\dfrac{1}{1}\)\(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)+\(\dfrac{1}{3}\)-\(\dfrac{1}{4}\)+...+\(\dfrac{1}{8}\)-\(\dfrac{1}{9}\))

 A = 2\(\times\)( 1 - \(\dfrac{1}{9}\))

A = 2 \(\times\) \(\dfrac{8}{9}\)

A = \(\dfrac{16}{9}\)

23 tháng 5 2021

 B =1/3 + 1/6 + 1/10 + 1/15 + 1/21 + 1/28 

 B = 1 - 1/3 + 1/3 - 1/6 + 1/6 - 1/10 + 1/10 - 1/15 + 1/15 - 1/21 + 1/21 - 1/28 

 B = 1 - ( 1/3 + 1/3 - 1/6 + 1/6 - 1/10 + 1/10 - 1/15 + 1/15 - 1/21 + 1/21 ) - 1/28

  B = 1 - 1/28

  B  = 27/28

~ Hok T ~

24 tháng 9 2018

tính thẳng đường í: 1/3+1/6+1/10+1/15+1/21+1/28

= 1/2+1/6+1/12=3/4

24 tháng 9 2018

tinh máy tính đúng đó

8 tháng 8 2020

Bài làm:

Ta có: \(1+\frac{1}{3}+\frac{1}{6}+...+\frac{1}{66}\)

\(=\frac{1}{1}+\frac{1}{1.3}+\frac{1}{3.2}+...+\frac{1}{11.6}\)

\(=\frac{1}{2}\left(\frac{1}{1.2}+\frac{1}{2.1.3}+\frac{1}{2.3.2}+...+\frac{1}{2.11.6}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{11.12}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{11}-\frac{1}{12}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{12}\right)\)

\(=\frac{1}{2}.\frac{11}{12}\)

\(=\frac{11}{24}\)

8 tháng 8 2020

\(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}+\frac{1}{55}+\frac{1}{66}\)

\(=\frac{2}{2}+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+\frac{2}{30}+...+\frac{2}{90}+\frac{2}{110}+\frac{2}{132}\)

\(=2\times\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}+...+\frac{1}{9\times10}+\frac{1}{10\times11}+\frac{1}{11\times12}\right)\)

\(=2\times\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\right)\)

\(=2\times\left(1-\frac{1}{12}\right)\)

\(=2\times\frac{11}{12}\)

\(=\frac{11}{6}\)

AH
Akai Haruma
Giáo viên
9 tháng 11 2021

Lời giải:

$\frac{A}{2}=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}$
$=\frac{2-1}{1\times 2}+\frac{3-2}{2\times 3}+\frac{4-3}{3\times 4}+\frac{5-4}{4\times 5}+\frac{6-5}{5\times 6}+\frac{7-6}{6\times 7}+\frac{9-8}{8\times 9}+\frac{10-9}{9\times 10}$

$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}$

$=1-\frac{1}{9}=\frac{8}{9}$

$\Rightarrow A=2\times \frac{8}{9}=\frac{16}{9}$

16 tháng 10 2023

\(A=\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+\dfrac{1}{45}+\dfrac{1}{55}\)

\(A=2\times\dfrac{1}{2}\times\left(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+\dfrac{1}{45}+\dfrac{1}{55}\right)\)

\(A=2\times\left(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}+\dfrac{1}{110}\right)\)

\(A=2\times\left(\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+\dfrac{1}{5\times6}+...+\dfrac{1}{9\times10}+\dfrac{1}{10\times11}\right)\)

\(A=2\times\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{10}-\dfrac{1}{11}\right)\)

\(A=2\times\left(\dfrac{1}{2}-\dfrac{1}{11}\right)\)

\(A=2\times\dfrac{9}{22}\)

\(A=\dfrac{9}{11}\)