Cho tam giác ABC (AB<AC) hai đường cao BE và CF gặp nhau tại H , các đường thẳng kẻ từ B song song với BE gặp nhau tại H , các đường thẳng kẻ từ B song song với CF và từ C song song BE gặp nhau tại D
a) Chứng minh ΔABE∼ΔACF
b)AE.CB=AB.EF
c)Gọi I là trung điểm của BC . Chứng minh H,I,D thẳng hàng
a) Xét ΔABE và ΔACFcó:
ˆA chung
ˆAEB=ˆAFC=90o
⇒ΔAEB∼ΔAFC (g.g)
b) ⇒AE/AF=AB/AC (hai cạnh tương ứng tỉ lệ)
⇒AE/AB=AF/AC
Xét ΔAEFvà ΔABC có:
ˆA chung
AE/AB=AF/AC(chứng minh trên)
⇒ΔAEF∼ΔABC (c.g.c)
⇒AE/AB=EF/BC (hai cạnh tương ứng tỉ lệ)
⇒AE.BC=AB.EF⇒AE.BC=AB.EF
c) Tứ giác BFCDBFCD có: BD//CH (giả thiết)
CD//BH
nên tứ giác BFCDlà hình bình hành
⇒ hai đường chéo cắt nhau tại trung điểm của mỗi đường, có I là trung điểm của BC, nên I là trung điểm của HD.
H,I,D thẳng hàng.