\(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{4n^2}< \frac{1}{4}\)( với N \(\varepsilon\)N*)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}< \frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{\left(2n-2\right)2n}\)
\(\Rightarrow\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}< \frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{\left(2n-2\right)2n}\)\(.\frac{1}{2}\) Ta gọi là A
\(\Rightarrow A=\frac{1}{2}\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{\left(2n-2\right)2n}\right)\)
\(\Rightarrow A=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2n}\right)=\frac{1}{2}.\frac{1}{2}-\frac{1}{2}.\frac{1}{2n}=\frac{1}{4}-\frac{1}{2n.2}\)
\(\Rightarrow M< \frac{1}{4}-\frac{1}{2n.2}< \frac{1}{4}\)
\(\Rightarrow M< \frac{1}{4}\left(Đpcm\right)\)
\(\)
\(N=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{2n^2}< \frac{1}{4}\)
Ta thấy:\(\frac{1}{4^2}< \frac{1}{3.4}\)
\(\frac{1}{6^2}< \frac{1}{4.5}\)
\(\frac{1}{8^2}< \frac{1}{6.7}\)
.......
\(\frac{1}{2n^2}< \frac{1}{\left(2n^2-2\right)\left(2n^2-1\right)}\)
Do đó:\(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{2n^2}< \frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{\left(2n^2-2\right)\left(2n^2-1\right)}\) hay
\(\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{2n^2}< \frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2n^2-2}-\frac{1}{2n^2-1}\)
\(\Leftrightarrow\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{2n^2}< \frac{1}{3}-\frac{1}{2n^2-1}\). Thay n = 2 ta có:
\(\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{2n^2}< \frac{1}{3}-\frac{1}{2.2^2-1}=\frac{1}{3}-\frac{1}{7}< \frac{1}{4}^{\left(đpcm\right)}\)
nhờ bạn giải thích kết quả của phép tính từ \(\frac{1}{8^2}+\frac{1}{10^2}+....+\frac{1}{2n^2}=?\)bao nhiêu và bạn làm thế nào để triệt tiêu còn lại số hạng đầu và số hạng cuối của dãy tính vì theo nếu theo kết quả bạn thì các sô hạng thứ ba trở đi theo quy luật mẫu các phân số được viết dưới dạng \((2n^2-2).\left(2n^2-1\right)\)thì kết quả ko thể triệt tiêu số hạng trước cho số hạng sau được. nhờ bạn giúp cảm ơn bạn(tth).
Đặt A là tên biểu thức
\(A=1-\frac{15}{16}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{4n^2}\)
\(A=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{2^2n^2}\)
\(A=\frac{1}{2^2}\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)\)
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};....;\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}\)
\(A< \frac{1}{2^2}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\right)\)
\(A< \frac{1}{2^2}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\right)\)
\(A< \frac{1}{2^2}\left(1-\frac{1}{n}\right)=\frac{1}{4}-\frac{1}{4n}< \frac{1}{4}\)(đpcm)
Đặt \(A=\frac{1}{2^2}-\frac{1}{2^4}+\frac{1}{2^6}-...+\frac{1}{2^{4n-2}}-\frac{1}{2^{4n}}+...+\frac{1}{2^{2002}}-\frac{1}{2^{2004}}\)
\(\Rightarrow2^2A=2^2.\left(\frac{1}{2^2}-\frac{1}{2^4}+...+\frac{1}{2^{4n-2}}-\frac{1}{2^{4n}}+...+\frac{1}{2^{2002}}-\frac{1}{2^{2004}}\right)\)
\(\Rightarrow4A=1-\frac{1}{2^2}+\frac{1}{2^4}-...-\frac{1}{2^{4n-2}}+\frac{1}{2^{4n}}-...-\frac{1}{2^{2002}}\)
\(\Rightarrow4A+A=\left(1-\frac{1}{2^2}+\frac{1}{2^4}-...-\frac{1}{2^{4n-2}}+\frac{1}{2^{4n}}-...-\frac{1}{2^{2002}}\right)+\left(\frac{1}{2^2}-\frac{1}{2^4}+...+\frac{1}{2^{4n-2}}-\frac{1}{2^{4n}}+...+\frac{1}{2^{2002}}-\frac{1}{2^{2004}}\right)\)
\(\Rightarrow5A=1-\frac{1}{2^{2004}}\)
Vì \(1-\frac{1}{2^{2004}}< 1.\)
\(\Rightarrow5A< 1\)
\(\Rightarrow A< \frac{1}{5}=0,2\)
\(\Rightarrow A< 0,2\left(đpcm\right).\)
Chúc bạn học tốt!
4S=\(\dfrac{4}{2^2}-\dfrac{4}{2^4}+\dfrac{4}{2^6}-...+\dfrac{4}{2^{4n-2}}-\dfrac{4}{2^{4n}}+...+\dfrac{4}{2^{2002}}-\dfrac{4}{2^{2004}}\)
4S=1-\(\dfrac{1}{2^2}+\dfrac{1}{2^4}-,...-\dfrac{1}{2^{2002}}\)
4S+S=1-\(\dfrac{1}{2^{2004}}\)
5S=\(\dfrac{2^{2004}-1}{2^{2004}}\)<1
\(\Rightarrow\)5S<1 hay S<\(\dfrac{1}{5}\)=0,2(đpcm)
Ta có :
\(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{4n^2}=\frac{1}{\left(2.2\right)^2}+\frac{1}{\left(2.3\right)^2}+\frac{1}{\left(2.4\right)^2}+...+\frac{1}{\left(2.2n\right)^2}\)
\(=\frac{1}{2^2.2^2}+\frac{1}{2^2.3^2}+\frac{1}{2^2.4^2}+...+\frac{1}{2^2.4n^2}=\frac{1}{2^2}\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{4n^2}\right)\)
\(< \frac{1}{2^2}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(4n^2-1\right)4n^2}\right)\)
\(=\frac{1}{4}\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{4n^2-1}-\frac{1}{4n^2}\right)=\frac{1}{4}\left(1-\frac{1}{4n^2}\right)\)
\(=\frac{1}{4}-\frac{1}{16n^2}< \frac{1}{4}\) ( vì \(\frac{1}{16n^2}>0\) )
Vậy \(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{4n^2}< \frac{1}{4}\)
Chúc bạn học tốt ~