tìm cặp số nguyên x,y thỏa
\(\frac{1}{x^2}\) + \(\frac{1}{y^2}\) +1 < \(\frac{1}{xy}\) + \(\frac{1}{x}\) + \(\frac{1}{y}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{6}-\frac{1}{y}=\frac{1}{2}\)
\(\Rightarrow\frac{x}{6}-\frac{1}{2}=\frac{1}{y}\)
\(\Rightarrow\frac{x}{6}-\frac{3}{6}=\frac{1}{y}\)
\(\Rightarrow\frac{x-3}{6}=\frac{1}{y}\)
\(\Rightarrow\left(x-3\right)y=6\)
Ta có bảng sau:
...
Bài này bạn đăng rồi Nguyễn Nhật Minh trả lời đúng rồi mà :
http://olm.vn/hoi-dap/question/314450.html
2(xy-6)=6y
(xy-6)=3y
x=(3y+6)/y=3+6/y
y={-6,-3,-2,-1,1,2,3,6)
x={2,1,0,-3,9,6,5,4)
\(\frac{x}{6}-\frac{1}{y}=\frac{1}{2}\)
\(\Leftrightarrow\frac{1}{y}=\frac{x}{6}-\frac{1}{2}\)
\(\Leftrightarrow\frac{1}{y}=\frac{x-3}{6}\)
\(\Leftrightarrow y\left(x-3\right)=6\)
=> y và x - 3 phải là ước của 6
=> Ư(6) = { - 6; - 3; - 2; - 1; 1; 2; 3; 6 }
Ta có bảng sau :
y | - 6 | - 3 | - 2 | - 1 | 1 | 2 | 3 | 6 |
x - 3 | - 1 | - 2 | - 3 | - 6 | 6 | 3 | 2 | 1 |
x | 2 | 1 | 0 | - 3 | 9 | 6 | 5 | 4 |
Vậy có 8 cặp số nguyên ( x;y ) thỏa mãn đề bài
1)
\(xy-y=x\Leftrightarrow y=\frac{x}{x-1}=1+\frac{1}{x-1}\)
y thuộc Z => x -1 thuộc U(1) ={ -1;1}
+x =-1 => y =0
+x =1 => y =2
2) \(x.\left(1-\frac{1}{7}\right)<1\frac{6}{7}\Leftrightarrow x.\frac{6}{7}<\frac{13}{7}\Rightarrow x<\frac{13}{7}.\frac{7}{6}=\frac{13}{6}=2,1\left(6\right)\)
x thuộc Z+ => x thuộc {1;2}
a) \(\frac{1}{x}+\frac{1}{y}=\frac{1}{2}+\frac{1}{2.x.y}\)
\(\Leftrightarrow\frac{x+y}{xy}=\frac{xy+1}{2xy}\Leftrightarrow\frac{2x+2y}{2xy}=\frac{xy+1}{2xy}\)
\(\Leftrightarrow2x+2y=xy+1\Leftrightarrow2x-xy+2y-1=0\)
\(\Leftrightarrow x\left(2-y\right)-2\left(2-y\right)=-3\Leftrightarrow\left(2-y\right)\left(x-1\right)=-3\)
Vì x, t nguyên nên 2 - y và x - 1 cũng nguyên. Vậy thì chúng phải là ước của -3.
Ta có bảng:
x-1 | -3 | -1 | 1 | 3 |
x | -2 | 0 | 2 | 4 |
2-y | 1 | 3 | -3 | -1 |
y | 1 | -2 | 5 | 3 |
Vậy ta có các cặp số (x ; y) thỏa mãn là: (-2;1) , (0; -2) , (2 ; 5) , (4 ; 3).
b) Do x, y nguyên nên (x -1)2 và y + 1 đều là ước của -4.
Ta có bảng:
(x-1)2 | 1 | 2 | 4 |
x | 0 hoặc 2 | \(\orbr{\begin{cases}x=\sqrt{2}+1\\x=1-\sqrt{2}\end{cases}}\left(l\right)\) | -1 hoặc 3 |
y + 1 | -4 | -1 | |
y | -3 | -2 |
Vậy ta có các cặp số (x ; y) thỏa mãn là: (0; -3) , (2; -3) , (-1; -2) (3 ; -2).
\(\frac{x}{5}+1=\frac{1}{y-1} \)
\(\frac{x}{5}+\frac{5}{5}=\frac{1}{y-1}\)
\(\frac{x+5}{5}=\frac{1}{y-1}\)
\(\Rightarrow\) (x+5)(y-1) =5
\(\Rightarrow\left(x+5\right)\)và (y-1) \(\in\)Ư(5)
x+5 | 1 | 5 | -1 | -5 |
y-1 | 5 | 1 | -5 | -1 |
x | -4 | 0 | -6 | -10 |
y | 6 | 2 | -4 | 0 |
Vậy (x,y)={(-4,6);(0,2);(-6,-4);(-10,0)}