Cho tam giác vuông ADC và tam giác vuông ABD có đỉnh góc vuông C và D nằm trên cùng 1 nửa mặt phẳng bờ AB. Gọi P là giao điểm của AC và BD. Qua P kẻ PI vuông góc với AB. Chứng minh :
a> AB.BI = BP.BD.
b> AB.AI = AC.AD.
c> AC.AD + BD.PD = AB^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đầu tiên, chứng minh rằng a; ab.bi = bp.bdb: Theo định lí tỷ lệ trong tam giác đồng dạng, ta có: a; ab.bi = (ac; ab). (ac; bd) = (ac; ab). (bp; bd) (vì p là giao điểm của ac và bd) = (ac; ab) / (ab; ac). (bp; bd) (vì (ac; bd) = (ab; ac) + (ab; bd)) = (ab; ac) / (ac; ab). (bd; bp) (vì (ab; ac) = (ac; ab) + (ac; bd)) = (ab; ac). (bd; bp) / (ac; ab) = (ab; ac). (bp; bd) / (ac; ab) (vì (bd; bp) = (bp; bd)) = bp.bdb / ac.apc
Tiếp theo, chứng minh rằng ab.ai = ac.apc: Tương tự như trên, ta có: ab.ai = (ab; ac). (ab; bd) = (ac; ab). (bp; bd) (vì p là giao điểm của ac và bd) = (ac; ab) / (ab; ac). (bd; bp) (vì (ac; bd) = (ab; ac) + (ab; bd)) = (ab; ac). (bd; bp) / (ab; ac) = (ab; ac). (bp; bd) / (ab; ac) (vì (bd; bp) = (bp; bd)) = ac.apc
Cuối cùng, chứng minh rằng ab^2 = ac + ap.bp.bd: Ta có: ab^2 = ab.ab = (ab; ac). (ab; bd) (vì (ab; ac) = (ac; ab) + (ab; bd)) = (ab; ac) / (ac; ab). (bd; ab) (vì (ac; bd) = (ab; ac) + (ab; bd)) = (ab; ac). (bd; ab) / (ac; ab) = (ab; ac). (bp; bd) / (ac; ab) (vì (bd; ab) = (bp; bd)) = ac + ap.bp.bd (vì (ab; ac) = ac và (bd; ab) = ap.bp.bd)
6:
ΔABC vuông tại A
=>AB^2+AC^2=BC^2
=>BC^2=18^2+24^2=900
=>BC=30(cm)
ΔABC vuông tại A có AM là trung tuyến
nên AM=BM=CM=BC/2=15cm
Xét ΔCMD vuông tại M và ΔCAB vuông tại A có
góc C chung
Do đó: ΔCMD đồng dạng với ΔCAB
=>CD/CB=CM/CA
=>CD/30=15/18=5/6
=>CD=25cm
ΔCMD đồng dạng với ΔCAB
=>DM/AB=CM/CA
=>DM/24=15/18=5/6
=>DM=20cm
Bài 1:
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE
b: Ta có: ΔABD=ΔACE
nên AD=AE
Ta có: AE+EB=AB
AD+DC=AC
mà AB=AC
và AD=AE
nên EB=DC
Xét ΔEBO vuông tại E và ΔDCO vuông tại D có
EB=DC
\(\widehat{EBO}=\widehat{DCO}\)
Do đó: ΔEBO=ΔDCO
c: Xét ΔABO và ΔACO có
AB=AC
BO=CO
AO chung
DO đó:ΔABO=ΔACO
Suy ra: \(\widehat{BAO}=\widehat{CAO}\)
hay AO là tia phân giác của góc BAC
1)
a) Ta có: góc BAD+góc CAE+góc BAC=180 độ
Mà góc BAC=90 độ nên góc BAD+ góc CAE=90 độ (1)
Vì tam giác ACE vuông tại E nên góc ACE+góc CAE=90 độ(2)
Từ (1) và (2) => góc BAD= góc ACE
Xét tam giác ABD và tam giác ACE có:
góc ADB=góc AED=90 độ
AB=AC ( vì tam giác ABC vuông cân tại A)
góc BAD=góc ACE (cmt)
=> tam giác ABD=tam giác ACE (cạnh huyền-góc nhọn)
b) Theo câu a) Tam giác ABD=tam giác ACE
=> DA=EC và BD=AE
Mà DE=DA+AE nên DE=EC+BD
Mình không vẽ hình, bạn tự vẽ nhé!
a) M là trung điểm của BC \(\Rightarrow BM=MC\)
Xét \(\Delta BAM\)và \(\Delta CDM\)có:
MA=MD ( giả thiết )
\(\widehat{BMA}=\widehat{CMD}\)( tính chất đối đỉnh )
BM=MC ( chứng minh trên )
\(\Rightarrow\Delta BAM=\Delta CDM\)( c.g.c )
b) Xét \(\Delta ACM\)và \(\Delta DBM\)có:
MA=MD ( giả thiết )
\(\widehat{BMD}=\widehat{CMA}\)( tính chất đối đỉnh )
BM=MC ( chứng minh trên )
\(\Rightarrow\Delta ACM=\Delta DBM\)( c.g.c )
\(\Rightarrow AC=BD\)( 2 cạnh tương ứng )
\(\Rightarrow\widehat{MAC}=\widehat{MDB}\)( 2 góc tương ứng ) ở vị trí so lê trong
\(\Rightarrow\)AC//BD
c) Đề bài không rõ ràng mình không làm được
d) Đề bài không rõ ràng mình không làm được
Chúc bạn học tốt!
đề phần b, bị sai đó
phài là AB.AI=AC.AP mới đúng
a, bn c/m \(\Delta ABD\)đồng dạng với \(\Delta PBI\)theo th góc -góc
(góc B chung, góc I = góc D =90o)
=> \(\frac{AB}{BD}=\frac{BP}{BI}\Rightarrowđpcm\)
b,tương tự phần a
xét\(\Delta ABC\)và \(\Delta API\)
c, đề sai bn nhé AC.AP chứ ko phải AC. AD
cộng 2 vế của phần a và b ta đc
AC.AP+BD.PD=AB.BI+AB.AI
=AB.(BI+AI)
=AB. AB=AB2(đpcm)
đây là cách làm còn tùy bn trình bày nha
tk mk nha