K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2023

Giả sử \(2\sqrt{2}+\sqrt{3}=x\left(x\in Q\right)\)

\(\Leftrightarrow\left(2\sqrt{2}+\sqrt{3}\right)^2=x^2\\ \Leftrightarrow11+4\sqrt{6}=x^2\\ \Leftrightarrow\sqrt{6}=\dfrac{x^2-11}{4}\)

Vì \(\sqrt{6}\) là số vô tỉ nên \(\dfrac{x^2-11}{4}\) là số vô tỉ \(\Rightarrow\) \(x^2\) là số vô tỉ, \(\Rightarrow x\) là số vô tỉ (vô lý)

Vậy \(2\sqrt{2}+\sqrt{3}\) là số vô tỉ

Giả sử \(\sqrt{3}-\sqrt{2}=x\left(x\in Q\right)\)  

\(\Leftrightarrow\left(\sqrt{3}-\sqrt{2}\right)^2=x^2\\ \Rightarrow5-2\sqrt{6}=x^2\\ \Rightarrow\sqrt{6}=\dfrac{5-x^2}{2}\)

Vì \(\sqrt{6}\) là số vô tỉ nên \(\dfrac{5-x^2}{2}\Rightarrow\) \(x^2\)là số vô tỉ, \(\Rightarrow x\) là số vô tỉ (vô lý)

Vậy \(\sqrt{3}-\sqrt{2}\) là số vô tỉ

Ta có : \(\sqrt{2}\)là số vô tỉ

\(\sqrt{3}\)là số vô tỉ

\(\Rightarrow\sqrt{2}+\sqrt{3}\)là số vô tỉ ( đpcm ) 

b) tương tự :

 \(\hept{\begin{cases}\sqrt{2}vôti\\\sqrt{3}vôti\\\sqrt{5}vôti\end{cases}}\)

\(\Rightarrow\sqrt{2}+\sqrt{3}+\sqrt{5}\)vô tỉ

8 tháng 10 2019

c) \(\sqrt{2}\)là số vô tỉ nên \(1+\sqrt{2}\)là số vô tỉ

\(\Rightarrow\sqrt{1+\sqrt{2}}\)là số vô tỉ

d) \(\sqrt{3}\)là số vô tỉ\(\Rightarrow\frac{\sqrt{3}}{n}\)là số vô tỉ

\(\Rightarrow m+\frac{\sqrt{3}}{n}\)là số vô tỉ

8 tháng 10 2019

Mọi số n không là số chính phương thì \(\sqrt{n}\)là số vô tỉ nên

\(\sqrt{2}\)và \(\sqrt{3}\)là số vô tỉ

Suy ra \(\sqrt{2}+\sqrt{3}\)là số vô tỉ

8 tháng 10 2019

Đặt \(x=\sqrt{2}+\sqrt{3}\)

Giả sử x là số hữu tỉ , nghĩa là \(x=\frac{p}{q}\left(p,q\in N,q\ne0\right)\)

Ta có : \(\frac{p}{q}=\sqrt{2}+\sqrt{3}\)

\(\Leftrightarrow\frac{p^2}{q^2}=\left(\sqrt{2}+\sqrt{3}\right)^2\)

\(\Leftrightarrow\frac{p^2}{q^2}-5=2\sqrt{6}\) ( vô lí )

Vì \(\frac{p^2}{q^2}\) là số hữu tỉ và \(2\sqrt{6}\) là số vô tỉ

Vậy \(x=\sqrt{2}+\sqrt{3}\) không phải là số hữu tỉ 

\(\Rightarrow x=\sqrt{2}+\sqrt{3}\) lá số vô tỉ

Chúc bạn học tốt !!!

10 tháng 9 2020

a) Bằng phản chứng giả sử \(\sqrt{2}\)là số hữu tỉ

---> Đặt \(\sqrt{2}=\frac{a}{b}\)với ƯCLN(a,b)=1 (tức là a/b tối giản), a,b>0

\(\Rightarrow b\sqrt{2}=a\Rightarrow2b^2=a^2\Rightarrow a^2\)là số chẵn \(\Rightarrow a\)là số chẵn

Đặt \(a=2k\Rightarrow b\sqrt{2}=2k\Rightarrow2b^2=4k^2\Rightarrow b^2=2k^2,k\inℕ\)

\(\Rightarrow b^2\)là số chẵn\(\Rightarrow b\)là số chẵn

Vậy \(2\inƯC\left(a,b\right)\RightarrowƯCLN\left(a,b\right)\ne1\)---> Mâu thuẫn giả thiết--->đpcm

b) Bằng phản chứng giả sử \(3\sqrt{3}-1\)là số hữu tỉ

---> Đặt \(3\sqrt{3}-1=\frac{a}{b}\)với ƯCLN(a,b)=1 và a,b>0

\(\Rightarrow3b\sqrt{3}=a+b\Rightarrow27b^2=\left(a+b\right)^2\Rightarrow\left(a+b\right)^2⋮9\Rightarrow a+b⋮3\)

Đặt \(a+b=3k,k\inℕ\Rightarrow a=3k-b\Rightarrow\frac{3k-b}{b}=3\sqrt{3}-1\Rightarrow\frac{3k}{b}=3\sqrt{3}\)

\(\Rightarrow k^2=3b^2\Rightarrow k^2⋮3\Rightarrow k⋮3\)---> Đặt \(k=3l,l\inℕ\Rightarrow a=9l-b\Rightarrow\frac{9l-b}{b}=3\sqrt{3}-1\Rightarrow\frac{9l}{b}=3\sqrt{3}\)

\(\Rightarrow b^2=3l^2\Rightarrow b^2⋮3\Rightarrow b⋮3\)

\(\Rightarrow3\inƯC\left(a,b\right)\RightarrowƯCLN\left(a,b\right)\ne1\)---> Mâu thuẫn giả thiết---> đpcm

(Bài dài quá, giải mệt vler !!)

30 tháng 5 2016

Đặt: \(\sqrt{2}=\frac{m}{n}\)

=> \(\frac{m^2}{n^2}=2\)

=> \(m^2=2n^2\)

=> \(m^2\) chia hết cho \(2\). Mà 2 là số nguyên tố nên => \(m\) chia hét cho 2

Đặt: \(m=2k\)

=> \(\frac{m^2}{n^2}=\frac{4k^2}{n^2}=2\)

=> \(4k^2=2n^2\)

=> \(n^2=2k^2\)

=> \(n^2\) chia hết cho 2. Mà 2 là số nguyên tố nên n chia hết cho 2.

Ta có \(\sqrt{2}=\frac{m}{n}=\frac{2a}{2b}\) không tối giản nên \(\sqrt{2}\) là số vo tỉ.

Các câu sau tương tự

30 tháng 5 2016

Mình dùng phương pháp phản chứng hơi tắt một tí.

Giả sử \(\sqrt{2}\) là số hữu tỉ thì sẽ có dạng \(\sqrt{2}=\frac{m}{n}\) tối giản.

Mình chứng minh \(\frac{m}{n}\) không tối giản nên \(\sqrt{2}\) là số vô tỉ

18 tháng 6 2015

G/s \(\sqrt{3}+\sqrt{2}\) Là số hữu tỉ .

Đặt \(\sqrt{2}+\sqrt{3}=a\) =>\(2+3+2\sqrt{6}=a^2\Leftrightarrow2\sqrt{6}=a^2-5\Rightarrow\sqrt{6}=\frac{a^2-5}{2}\)

Vì a là số huuwx tỉ nên \(\frac{a^2-5}{2}\) là số hữu tỉ => \(\sqrt{6}\) cũng là số hữu tỉ

\(\sqrt{6}\) là số hữu tỉ => \(\sqrt{6}\) viết dưới dạng p/s tối giản a/b (UCLN(a,b) = 1)

=> \(\sqrt{6}=\frac{a}{b}\)  => \(6=\frac{a^2}{b^2}\Rightarrow6b^2=a^2\Leftrightarrow a^2\) chia hết cho 6 => a chia hết cho 6]

Đặt a = 6t ta có 36t^2 =6b^2 => b^2=6t^2 => b chia hét cho 6 

Vậy a, b có Mottj UC là 6 trái với G/s UCLN (a,b) = 1 

VẬy căn 6 là số vô tỉ => ĐPCM

17 tháng 6 2015

chịu     

Giả sử \(\sqrt{3}-\sqrt{2}\) là số hữu tỉ

nên \(\sqrt{3}-\sqrt{2}=\dfrac{p}{q}\left(q\ne0\right)\)

\(\Leftrightarrow\dfrac{p^2}{q^2}=5-2\sqrt{6}\)

\(\Leftrightarrow\dfrac{p^2}{q^2}-5=-2\sqrt{6}\)(vô lý)

Vậy: \(\sqrt{3}-\sqrt{2}\) là số vô tỉ

1 tháng 7 2021

Link : Chứng minh rằng căn2 +căn3 là số vô tỉ 

17 tháng 10 2018

Đề thiếu điều kiện n là số tự nhiên nhé 

\(a)\)\(\sqrt{1+2+3+4+...+\left(n-1\right)+n+\left(n-2\right)+...+3+2+1}\)

\(=\)\(\sqrt{\frac{n\left(n-1\right)}{2}+n+\frac{n\left(n-1\right)}{2}}\)

\(=\)\(\sqrt{\frac{2n\left(n-1\right)}{2}+n}\)

\(=\)\(\sqrt{n\left(n-1\right)+n}\)

\(=\)\(\sqrt{n\left(n-1+1\right)}\)

\(=\)\(\sqrt{n^2}\)

\(=\)\(\left|n\right|\)

Mà n là số tự nhiên nên \(n\ge0\)\(\Rightarrow\)\(\left|n\right|=n\)

Vậy \(\sqrt{1+2+3+4+...+\left(n-1\right)+n+\left(n-1\right)+...+3+2+1}=n\) ( đpcm ) 

Chúc bạn học tốt ~ 

17 tháng 7 2019

1,44224957+2,080083823=3,522333393 \(\in\)I

17 tháng 7 2019

Liên quan gì bạn @Tam Mai, chứng minh chứ không phải bấm máy tính