\(\frac{-150.\left(1352-41\right)}{\left(1352-41\right)\left(150-15\right)}< x< \frac{2400:48-250}{350-3600:12}\)
tìm x thuộc Z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì mỗi số hạng trên là giá trị tuyệt đối nên \(\ge\) 0 \(\Rightarrow\) Không thể có trường hợp có 2 số đối nhau, số còn lại bằng 0
\(\Rightarrow\left|x-\frac{15}{8}\right|=0\) và \(\left|\frac{2015}{2016}-y\right|=0\) và \(\left|2007+z\right|=0\)
\(\Rightarrow x-\frac{15}{8}=0\) và \(\frac{2015}{2016}-y=0\) và \(2007+z=0\)
\(\Rightarrow x=\frac{15}{8}\) và \(y=\frac{2015}{2016}\) và \(z=\left(-2007\right)\)
\(\left|x-\frac{15}{8}\right|\ge0;\left|\frac{2015}{2016}-y\right|\ge0;\left|2007+z\right|\ge0\)
Vậy \(\left|x-\frac{15}{8}\right|+\left|\frac{2015}{2016}-y\right|+\left|2007+z\right|\ge0\)
\(\left|x-\frac{15}{8}\right|+\left|\frac{2015}{2016}-y\right|+\left|2007+z\right|=0\)
\(\Leftrightarrow\)\(\left|x-\frac{15}{8}\right|=0;\left|\frac{2015}{2016}-y\right|=0;\left|2007+z\right|=0\)
Vậy \(x=\frac{15}{8};y=\frac{2015}{2016};z=-2007\)
a)
\(\left(\frac{1}{3}+\frac{12}{67}+\frac{13}{41}\right)-\left(\frac{79}{67}-\frac{28}{41}\right)\)
= \(\frac{1}{3}+\frac{12}{67}+\frac{13}{41}-\frac{79}{67}+\frac{28}{41}\)
= \(\frac{1}{3}+\left(\frac{12}{67}-\frac{79}{67}\right)+\left(\frac{13}{41}+\frac{28}{41}\right)\)
= \(\frac{1}{3}+\left(-1\right)+1\)
= \(\frac{1}{3}+0=\frac{1}{3}\)
b)
\(\frac{38}{45}-\left(\frac{8}{45}-\frac{17}{51}-\frac{3}{11}\right)\)
= \(\frac{38}{45}-\frac{8}{45}+\frac{17}{51}+\frac{3}{11}\)
= \(\left(\frac{38}{45}-\frac{8}{45}\right)+\left(\frac{17}{51}+\frac{3}{11}\right)\)
= \(\frac{2}{3}+\frac{20}{33}\)
= \(\frac{14}{11}\)
Ta có :
\(\frac{5}{1.6}+\frac{5}{6.11}+................+\frac{5}{\left(5.x+1\right).\left(5.x+6\right)}=\)\(\frac{50}{41}\)
=> \(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...............+\frac{1}{5.x+1}-\frac{1}{5.x+6}\) = \(\frac{50}{41}\)
=> \(1-\frac{1}{5.x+6}=\frac{50}{41}\)
=> \(\frac{1}{5.x+6}=\frac{-9}{41}\)................ mình ko tìm ra vì p/s kia ko có tử là 1
bạn xem lại đề bài giúp mình nha