Tìm x,y thuộc Z
\(x^2y-x^3=3-y\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xy-x-3y=-1
=>x(y-1)-3y+3=-1+3=2
=>x(y-1)-3(y-1)=2
=>(x-3)(y-1)=2
vì x,y thuộc Z nên x-3 thuộc Z, y-1 thuộc Z
ta có bảng:
x-3: 1
x: 4
y-1: 2
y: 3....(bn tự làm tiếp)
vậy
Bài làm:
Ta có: \(x^3y=xy^3+1997\)
\(\Leftrightarrow x^3y-xy^3=1997\)
\(\Leftrightarrow xy\left(x^2-y^2\right)=1997\)
\(\Leftrightarrow xy\left(x-y\right)\left(x+y\right)=1997\)
Mà 1997 là số lẻ
=> x ; y ; x - y ; x + y phải đều lẻ
Mà ta thấy nếu x ; y lẻ => x + y và x - y chẵn
=> \(xy\left(x-y\right)\left(x+y\right)\)chẵn (vô lý) (1)
Nếu x - y ; x + y lẻ
=> Sẽ phải tồn tại x hoặc y chẵn
=> \(xy\left(x-y\right)\left(x+y\right)\)chẵn (vô lý) (2)
Từ (1) và (2)
=> Không tồn tại x, y thỏa mãn phương trình
CRP
Trả lời:
\(x^3y=xy^3+1997\)
\(\Leftrightarrow x^3y-xy^3=1997\)
\(\Leftrightarrow xy.\left(x^2-y^2\right)=1997\)
\(\Leftrightarrow xy.\left(x-y\right).\left(x+y\right)=1997\)
Ta có:\(1997\)là số nguyên tố, \(xy.\left(x-y\right).\left(x+y\right)\)là hợp số
\(\Rightarrow\left(x,y\right)\in\varnothing\)
Vậy không tìm được x và y thỏa mãn đề bài