cho \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\) và\(a+b+c=a^2+b^2+c^2=1\)tìm hệ thức liên hệ giữa x,y,z không phụ thuộc vào a,b.c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: Đặt a/x là m; b/y là n; c/z là p, ta có: m + n + p = 2; 1/m + 1/n + 1/p = 0. Tìm m2 + n2 + p2 ?
Từ 1/m + 1/n + 1/p = 0
=> mnp(1/m + 1/n + 1/p) = 0
<=> mn + np + mp = 0
Mặt khác, ta có (m + n + p)2 = m2 + n2 + p2 + 2(mp + np + mp) = 4
Mà mn + np + mp = 0 => m2 + n2 + p2 + 0 = 4
Trả lời: Vậy a2/x2 + b2/y2 + c2/z2 = 4
Mk sửa lại đề nhá : \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\)
Ta có : \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}=\left(\frac{x}{2}\right)^3=\left(\frac{y}{4}\right)^3=\left(\frac{z}{6}\right)^3\)
\(\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)
Đặt t = \(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)
Khi đó \(t^2=\frac{x^2}{2^2}=\frac{y^2}{4^2}=\frac{z^2}{6^2}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
Suy ra : t = \(\frac{1}{2};-\frac{1}{2}\)
+ t = \(\frac{1}{2}\) thì x = \(\frac{1}{2}\).2 = 1
y = \(\frac{1}{2}\).4 = 2
z = \(\frac{1}{2}\).6 = 3
+ t = \(-\frac{1}{2}\) thì x = \(-\frac{1}{2}\). 2 = -1
y \(=-\frac{1}{2}.4=-2\)
z \(=-\frac{1}{2}.6=-3\)
1.
Ta có x+y+z=0
=>x+y=-z; x+z=-y; y+z=-x.
\(\left(\frac{x}{y}+1\right)\left(\frac{y}{z}+1\right)\left(\frac{z}{x}+1\right)\)\(=\frac{x+y}{y}\cdot\frac{y+z}{z}\cdot\frac{z+x}{x}\)\(=-\frac{xyz}{xyz}=-1\)
2) a+b+c=0 <=> (a+b+c)^2=0
<=> a^2+b^2+c^2+2(ab+bc+ca)=0
VT >= ab+bc+ca+2(ab+bc+ca)
=> 0 >= 3(ab+bc+ca)
<=> 0 >= (ab+bc+ca)
Dấu "=" xảy ra khi a=b=c=0
Từ \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\)
\(\Rightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1^2\)
\(\left(\frac{x}{a}+\frac{y}{b}\right)^2+2\left(\frac{x}{a}+\frac{y}{b}\right)\frac{z}{c}+\left(\frac{z}{c}\right)^2=1\)
\(\left(\frac{x}{a}\right)^2+2\frac{x}{a}\frac{y}{b}+\left(\frac{y}{b}\right)^2+\left(2\frac{x}{a}+2\frac{y}{b}\right)\frac{z}{c}+\left(\frac{z}{c}\right)^2=1\)
\(\frac{x^2}{a^2}+\frac{2xy}{ab}+\frac{y^2}{b^2}+\frac{2xz}{ac}+\frac{2yz}{bc}+\frac{z^2}{c^2}=1\)
\(\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)+\left(\frac{2xy}{ab}+\frac{2xz}{ac}+\frac{2yz}{bc}\right)=1\)
\(\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)+\frac{2xyz}{abc}\left(\frac{c}{z}+\frac{b}{y}+\frac{a}{x}\right)=1\)
\(\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)+\frac{2xyz}{abc}.0=1\)
\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\left(ĐPCM\right)\)
\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\Rightarrow ayz+bxz+cxy=0\)
\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\Leftrightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac}\right)=1\)
\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1-2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac}\right)\)
\(=1-2.\frac{cxy+bxz+ayz}{abc}=1-2.0=1\)
Ta có: \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\Leftrightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)
\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{zx}{ca}\right)=1\)
\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\cdot\frac{xyc+yza+zxb}{abc}=1\)
Mà \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\Leftrightarrow\frac{yza+zxb+xyc}{xyz}=0\)
\(\Rightarrow yza+zxb+xyc=0\)
\(\Rightarrow A=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\)
Bài này có trong câu hỏi tương tự và đã được olm.vn bình chọn nhé
Mình chỉ làm lại cho bạn dễ coi thôi
Đặt \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}=k\)
Khi đó \(a=kx;b=yk;c=zk\)
Suy ra \(\frac{ak^2+bk+c}{xk^2+yk+z}=\frac{xk.k^2+yk.k+zk}{x.k^2+yk+z}=\frac{xk^3+yk^2+zk}{xk^2+yk+z}=\frac{k.\left(xk^2+yk+z\right)}{xk^2+yk+z}=k\)
Do đó giá trị biểu thức không phụ thuộc vào k
Vậy..