K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2019

Chiều mai mình nộp ạ

29 tháng 6 2017

Mk sửa lại đề nhá : \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\)

Ta có :  \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}=\left(\frac{x}{2}\right)^3=\left(\frac{y}{4}\right)^3=\left(\frac{z}{6}\right)^3\)

\(\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)

Đặt t = \(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)

Khi đó \(t^2=\frac{x^2}{2^2}=\frac{y^2}{4^2}=\frac{z^2}{6^2}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)

Suy ra : t = \(\frac{1}{2};-\frac{1}{2}\)

+ t = \(\frac{1}{2}\) thì x = \(\frac{1}{2}\).2 = 1

                      y = \(\frac{1}{2}\).4 = 2

                      z = \(\frac{1}{2}\).6 = 3

+ t = \(-\frac{1}{2}\) thì x = \(-\frac{1}{2}\). 2 = -1

                         y \(=-\frac{1}{2}.4=-2\)

                        z \(=-\frac{1}{2}.6=-3\)

2 tháng 12 2017

Bài này có trong câu hỏi tương tự và đã được olm.vn bình chọn nhé 

Mình chỉ làm lại cho bạn dễ coi thôi 

Đặt \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}=k\)

Khi đó \(a=kx;b=yk;c=zk\)

Suy ra \(\frac{ak^2+bk+c}{xk^2+yk+z}=\frac{xk.k^2+yk.k+zk}{x.k^2+yk+z}=\frac{xk^3+yk^2+zk}{xk^2+yk+z}=\frac{k.\left(xk^2+yk+z\right)}{xk^2+yk+z}=k\)

Do đó giá trị biểu thức không phụ thuộc vào k 

Vậy..

2 tháng 12 2017

 bạn viết sai đề rùi

a) Ta có: \(A=\frac{-1}{8}x^2z\left(4xy^2z\right)\left(\frac{2}{5}x^3y\right)\)

\(=\left(\frac{-1}{8}\cdot4\cdot\frac{2}{5}\right)\cdot\left(x^2\cdot x\cdot x^3\right)\cdot\left(y^2\cdot y\right)\cdot\left(z\cdot z\right)\)

\(=\frac{-1}{5}x^6y^3z^2\)

-Hệ số là \(-\frac{1}{5}\)

-Bậc là 12

b) Đơn thức B đồng dạng với đơn thức A có dạng là: \(Cx^6y^3z^2\)

mà tại x=1; y=2 và z=-1 đơn thức B có giá trị là 3 nên \(C\cdot1^6\cdot2^3\cdot\left(-1\right)^2=3\)

\(\Leftrightarrow C\cdot8=3\)

hay \(C=\frac{3}{8}\)

Vậy: Đơn thức B là \(\frac{3}{8}x^6y^3z^2\)

22 tháng 4 2020

Trần Quốc Tuấn hi dạo này bận zá ít onl mà bạn tag mình đúng ngày mk k onl=.=

1 tháng 11 2018

Max dễ