Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mk sửa lại đề nhá : \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\)
Ta có : \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}=\left(\frac{x}{2}\right)^3=\left(\frac{y}{4}\right)^3=\left(\frac{z}{6}\right)^3\)
\(\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)
Đặt t = \(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)
Khi đó \(t^2=\frac{x^2}{2^2}=\frac{y^2}{4^2}=\frac{z^2}{6^2}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
Suy ra : t = \(\frac{1}{2};-\frac{1}{2}\)
+ t = \(\frac{1}{2}\) thì x = \(\frac{1}{2}\).2 = 1
y = \(\frac{1}{2}\).4 = 2
z = \(\frac{1}{2}\).6 = 3
+ t = \(-\frac{1}{2}\) thì x = \(-\frac{1}{2}\). 2 = -1
y \(=-\frac{1}{2}.4=-2\)
z \(=-\frac{1}{2}.6=-3\)
Bài này có trong câu hỏi tương tự và đã được olm.vn bình chọn nhé
Mình chỉ làm lại cho bạn dễ coi thôi
Đặt \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}=k\)
Khi đó \(a=kx;b=yk;c=zk\)
Suy ra \(\frac{ak^2+bk+c}{xk^2+yk+z}=\frac{xk.k^2+yk.k+zk}{x.k^2+yk+z}=\frac{xk^3+yk^2+zk}{xk^2+yk+z}=\frac{k.\left(xk^2+yk+z\right)}{xk^2+yk+z}=k\)
Do đó giá trị biểu thức không phụ thuộc vào k
Vậy..
a) Ta có: \(A=\frac{-1}{8}x^2z\left(4xy^2z\right)\left(\frac{2}{5}x^3y\right)\)
\(=\left(\frac{-1}{8}\cdot4\cdot\frac{2}{5}\right)\cdot\left(x^2\cdot x\cdot x^3\right)\cdot\left(y^2\cdot y\right)\cdot\left(z\cdot z\right)\)
\(=\frac{-1}{5}x^6y^3z^2\)
-Hệ số là \(-\frac{1}{5}\)
-Bậc là 12
b) Đơn thức B đồng dạng với đơn thức A có dạng là: \(Cx^6y^3z^2\)
mà tại x=1; y=2 và z=-1 đơn thức B có giá trị là 3 nên \(C\cdot1^6\cdot2^3\cdot\left(-1\right)^2=3\)
\(\Leftrightarrow C\cdot8=3\)
hay \(C=\frac{3}{8}\)
Vậy: Đơn thức B là \(\frac{3}{8}x^6y^3z^2\)
Trần Quốc Tuấn hi dạo này bận zá ít onl mà bạn tag mình đúng ngày mk k onl=.=