K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2018

\(\left(x+3\right)\left(x+4\right)\left(x+5\right)\left(x+6\right)=0\)

\(\Leftrightarrow\)\(x+3=0\)

hoặc   \(x+4=0\)

hoặc  \(x+5=0\)

hoặc  \(x+6=0\)

\(\Leftrightarrow\)\(x=-3\)

hoặc  \(x=-4\)

hoặc  \(x=-5\)

hoặc  \(x=-6\)

Vậy...

22 tháng 1 2020

a) \(x^2-x-6>0\)

\(\Leftrightarrow x^2-3x+2x-6>0\)

\(\Leftrightarrow\left(x^2-3x\right)+\left(2x-6\right)>0\)

\(\Leftrightarrow x.\left(x-3\right)+2.\left(x-3\right)>0\)

\(\Leftrightarrow\left(x-3\right).\left(x+2\right)>0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3>0\\x+2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>0+3\\x>0-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>3\\x>-2\end{matrix}\right.\)

Vậy tập hợp nghiệm của bất phương trình \(x^2-x-6>0\) là: \(S=\left\{x>3;x>-2\right\}.\)

Chúc bạn học tốt!

28 tháng 11 2021

b) Đặt \(\sqrt{x^2-6x+6}=a\left(a\ge0\right)\)

\(\Rightarrow a^2+3-4a=0\)

=> (a - 3).(a - 1) = 0

=> \(\left[{}\begin{matrix}a=3\\a=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2-6x+6}=3\\\sqrt{x^2-6x+6}=1\end{matrix}\right.\)

Bình phương lên giải tiếp nhé!

c) Tương tư câu b nhé

 

7 tháng 5 2020

a)

\(\left(5x+3\right)\cdot\left(x^2+4\right)\cdot\left(x-4\right)=0\\ \Rightarrow\left[{}\begin{matrix}5x+3=0\\x-4=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\frac{3}{5}\\x=4\end{matrix}\right.\)

b)

\(\left(4x-1\right)\cdot\left(x-3\right)-\left(x-2\right)\cdot\left(5x+2\right)=0\\ \Leftrightarrow4x^2-12x-x+3-5x^2-2x+10x+4=0\\ \Leftrightarrow-x^2-5x+7=0\\ \Rightarrow x=\left[{}\begin{matrix}-\frac{5+\sqrt{53}}{2}\\-\frac{5-\sqrt{53}}{2}\end{matrix}\right.\)

c)

\(\left(x+3\right)\cdot\left(x-5\right)+\left(x+3\right)\cdot\left(3x-4\right)=0\\ \Leftrightarrow\left(x+3\right)\cdot\left(x-5+3x-4\right)=0\\ \Leftrightarrow\left(x+3\right)\cdot\left(4x-9\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+3=0\\4x-9=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-3\\x=\frac{9}{4}\end{matrix}\right.\)

d)

\(\left(x+6\right)\cdot\left(3x-1\right)+x^2-36=0\\ \Leftrightarrow\left(x+6\right)\cdot\left(3x-1\right)+\left(x^2-36\right)=0\\ \Leftrightarrow\left(x+6\right)\cdot\left(3x-1\right)+\left(x+6\right)\cdot\left(x-6\right)=0\\ \Leftrightarrow\left(x+6\right)\cdot\left(3x-1+x-6\right)=0\\ \Leftrightarrow\left(x+6\right)\cdot\left(4x-7\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+6=0\\4x-7=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-6\\x=\frac{7}{4}\end{matrix}\right.\)

e)

\(0.75x\cdot\left(x+5\right)=\left(x+5\right)\cdot\left(3-1.25x\right)\\ \Leftrightarrow0.75x\cdot\left(x+5\right)-\left(x+5\right)\cdot\left(3-1.25x\right)=0\\ \Leftrightarrow\left(x+5\right)\cdot\left(0.75x-3+1.25x\right)=0\\ \Leftrightarrow\left(x+5\right)\cdot\left(2x-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+5=0\\2x-3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-5\\x=\frac{3}{2}\end{matrix}\right.\)

6 tháng 2 2019

ta có : x^5+2x^4+3x^3+3x^2+2x+1=0

\(\Leftrightarrow\)x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0

\(\Leftrightarrow\)(x^5+x^4)+(x^4+x^3)+(2x^3+2x^2)+(x^2+x)+(x+1)=0

\(\Leftrightarrow\)x^4(x+1)+x^3(x+1)+2x^2(x+1)+x(x+1)+(x+1)=0

\(\Leftrightarrow\)(x+1)(x^4+x^3+2x^2+x+1)=0

\(\Leftrightarrow\)(x+1)(x^4+x^3+x^2+x^2+x+1)=0

\(\Leftrightarrow\)(x+1)[x^2(x^2+x+1)+(x^2+x+1)]=0

\(\Leftrightarrow\)(x+1)(x^2+x+1)(x^2+1)=0

x^2+x+1=(x+\(\dfrac{1}{2}\))^2+\(\dfrac{3}{4}\)\(\ne0\) và x^2+1\(\ne0\)

\(\Rightarrow\)x+1=0

\(\Rightarrow\)x=-1

CÒN CÂU B TỰ LÀM (02042006)

b: x^4+3x^3-2x^2+x-3=0

=>x^4-x^3+4x^3-4x^2+2x^2-2x+3x-3=0

=>(x-1)(x^3+4x^2+2x+3)=0

=>x-1=0

=>x=1

11 tháng 4 2022

1)

<=> \(x^2-3x=0\)

\(\Leftrightarrow x\left(x-3\right)=0\)

x= 0 

x = 3

2) <=> \(x\left(x-3\right)=4\)

=> \(x=\dfrac{4}{x}+3\)

 

11 tháng 4 2022

\(2,x^2-3x=4\)

\(\Leftrightarrow x^2-3x-4=0\)

\(\Delta=b^2-4ac=\left(-3\right)^2-4\left(-4\right)=25>0\)

\(\Rightarrow\)Pt có 2 nghiệm pb

\(\left\{{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{3+5}{2}=4\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-3-5}{2}=-1\end{matrix}\right.\)

Vậy \(S=\left\{4;-1\right\}\)

\(3,x^4-5x^2+6=0\)

Đặt \(t=x^2\left(t\ge0\right)\)

Pt trở thành

\(t^2-5t+6=0\)

\(\Delta=b^2-4ac=\left(-5\right)^2-4.6=1>0\)

\(\Rightarrow\)Pt ó 2 nghiệm pb

\(\left\{{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{5+1}{2}=3\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-5-1}{2}-3\end{matrix}\right.\)

\(\Rightarrow t=x^2\Leftrightarrow t=\pm\sqrt{3}\)

Vậy \(S=\left\{\pm\sqrt{3}\right\}\)

 

19 tháng 9 2021

1) \(\sqrt{5-2x}=6\left(đk:x\le\dfrac{5}{2}\right)\)

\(\Leftrightarrow5-2x=36\)

\(\Leftrightarrow2x=-31\Leftrightarrow x=-\dfrac{31}{2}\left(tm\right)\)

2) \(\sqrt{2-x}=\sqrt{x+1}\left(đk:2\ge x\ge-1\right)\)

\(\Leftrightarrow2-x=x+1\)

\(\Leftrightarrow2x=1\Leftrightarrow x=\dfrac{1}{2}\left(tm\right)\)

3) \(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)

\(\Leftrightarrow\left|2x+1\right|=6\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)

4) \(\sqrt{x^2-10x+25}=x-2\left(đk:x\ge2\right)\)

\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=x-2\)

\(\Leftrightarrow\left|x-5\right|=x-2\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=x-2\left(x\ge5\right)\\x-5=2-x\left(2\le x< 5\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}5=2\left(VLý\right)\\x=\dfrac{7}{2}\left(tm\right)\end{matrix}\right.\)

19 tháng 9 2021

lamf nốt 4

 

6 tháng 8 2015

a)x5+x-1=0

<=>(x5+x4+x3+x2+x)-(x4+x3+x2+x+1)=0

<=>(x4+x3+x2+x+1)(x-1)=0

Do x4+x3+x2+x+1>0

=>x+1=0

<=>x=1