K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2018

Sory mình chưa đọc hết

A) Xét ACE và ABD có:

Góc BAC chung

góc AEC=gocsADB = 90

=> ACE đồng dạng với ABD

B) Xét tam giác EHB và tam giác DHC

EHB=DHC(2 góc đối đỉnh)

BEH=CDH=90

=> EHB đồng dạng với DHC

=> EH/HB = HD/HC (tính chất)

=> EH.CH=HD.HB

C) Vì BD,EC là 2 đường cao của tam giác ABC cắt nhau tại H

=> AH cũng là đường cao

=>AH vuông góc với BC

Xét AFC và FIC

ACB chung

AFC=FIC=90

=>Tam giác AFC đồng dạng với tam giác FIC

=> IF/IC=FA/FC(tính chất)

D) gọi NI cắt MF tại K

25 tháng 4 2018

BD Và CE là đường gì bạn ơi???
 

30 tháng 4 2017

Bạn tự vẽ hình nhen ,mình giải đây

a) xét tam giác ABD và tam giác ACE

góc D=góc E(=90)

góc A chung

=> 2 tam giác đồng dạng

b) xet tam giác HEB và HDC

Góc HEB=góc HDC(=90)

góc ABD = góc ACE( theo câu a)

=> tam giác HEB đồng dạng tam giác HDC ( gg)

=> \(\dfrac{HB}{HE}=\dfrac{HC}{HD}\Leftrightarrow HB.HD=HE.HC\)

c) Ta có: AF là đường cao thứ 3 ( đi qua giao điểm của 2 đường cao)

Xét tam giác FIC và tam giác AFC có:

góc FIC = góc AFC (=90)

góc C chung

=> 2 tam giác trên đồng dạng

=> \(\dfrac{IF}{IC}=\dfrac{FA}{FC}\left(đpcm\right)\)

Nhớ tick cho mình nhé

Chúc bạn học tốthaha

30 tháng 4 2017

A B C E H D I F

Giải:
a, Ta có: \(\widehat{ABD}+\widehat{BAD}=90^o\left(\widehat{ADB}=90^o\right)\) hay \(\widehat{ABD}+\widehat{BAC}=90^o\) (1)

\(\widehat{ACE}+\widehat{CAE}=90^o\left(\widehat{AEC}=90^o\right)\) hay \(\widehat{ACE}+\widehat{BAC}=90^o\) (2)

Từ (1), (2) \(\Rightarrow\widehat{ABD}=\widehat{ACE}\)

\(\widehat{ADB}=\widehat{AEC}=90^o\)

\(\Rightarrow\Delta ABD\) đồng dạng với \(\Delta ACE\) ( g-g )

b, Do \(\widehat{EHB}=\widehat{DHC}\) ( đối đỉnh ), \(\widehat{BEH}=\widehat{CDH}=90^o\)

\(\Rightarrow\Delta EHB\) đồng vị với \(\Delta DHC\)

\(\Rightarrow\dfrac{HB}{HC}=\dfrac{HE}{HD}\Rightarrow HD.HB=HE.HC\left(đpcm\right)\)

c, BD, CE là 2 đường cao của t/g ABC cắt nhau tại H

\(H\in AF\)

\(\Rightarrow\)AF cũng là đường cao của t/g ABC

Do \(\widehat{AFC}=\widehat{CIF}=90^o\), \(\widehat{ACF}\): góc chung

\(\Rightarrow\Delta AFC\) đồng vị với \(\Delta FIC\)

\(\Rightarrow\dfrac{FA}{FI}=\dfrac{FC}{IC}\Rightarrow\dfrac{IF}{FA}=\dfrac{IC}{FC}\Rightarrow\dfrac{IF}{IC}=\dfrac{FA}{FC}\left(đpcm\right)\)

Vậy...