Tìm x, y thuộc Z, biết
( x-7 )( xy + 1 ) = 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Rút gọn thừa số chung
Đơn giản biểu thức
Giải phương trình
Rút gọn thừa số chung
Giải phương trình
5xy+5x+y=5
5xy-5x-5+y=0
5(xy-x-1)+y=0
=>5(xy-x-1)=0 và y=0
=>xy-x-1=0 và y =0
thay y=0 vào xy-x-1=0
ta có: x.0-x-1=0 =>x=-1
vậy x=-1,y=0
hình như sai,ta cx ko rõ,nếu sai thì xin lỗi nhóe
x+y=xy suy ra x+y-xy = 0
suy ra (x-xy)+y -1 = -1
suy ra x(1-y)-(1-y)=-1
suy ra (1-y)(x-1)=-1
suy ra (1-y) va (x-1) thuoc uoc kua -1
suy ra 1-y = 1 va x-1=-1
hoac 1-y=-1 va x-1 =1
suy ra y=0 va x bag 0
hoac y =2 va x=2
vay co 2 cap x,y thoa man la(0;0) va (2;2)
x+y=xy suy ra x+y-xy = 0
suy ra (x-xy)+y -1 = -1
suy ra x(1-y)-(1-y)=-1
suy ra (1-y)(x-1)=-1
suy ra (1-y) va (x-1) thuoc uoc kua -1
suy ra 1-y = 1 va x-1=-1
hoac 1-y=-1 va x-1 =1
suy ra y=0 va x bag 0
hoac y =2 va x=2
vay co 2 cap x,y thoa man la(0;0) va (2;2)
=>2 x+2y =xy
=>xy -2x-2y=0
=>x(y-2)-2(y-2)=4
=>(x-2)(y-2)=4
x-2 | 1 | 4 | -1 | -4 | 2 | -2 |
y-2 | 4 | 1 | -4 | -1 | 2 | -2 |
x | 3 | 6 | 1 | -2 | 4 | 0 |
y | 6 | 3 | 2 | 1 | 4 | 0 |
K NHA
Mi cx là cái loại cáo đội lốt người thôi .Bày đặt bới tau ahihi đồ c-hó....
\(\left(x-7\right).\left(xy+1\right)=9\)
\(\Rightarrow\left(x-7\right).\left(xy+1\right)=1.9=9.1=\left(-1\right).\left(-9\right)=\left(-9\right).\left(-1\right)=3.3=\left(-3\right).\left(-3\right)\)
\(TH1:\hept{\begin{cases}x-7=1\\xy+1=9\end{cases}\Rightarrow\hept{\begin{cases}x=8\\y=1\end{cases}}}\)
\(TH2:\hept{\begin{cases}x-7=9\\xy+1=1\end{cases}}\Rightarrow\hept{\begin{cases}x=16\\y=0\end{cases}}\)
\(TH3:\hept{\begin{cases}x-7=-1\\xy+1=-9\end{cases}}\Rightarrow\hept{\begin{cases}x=6\\y=\frac{-10}{6}\left(\text{loại}\right)\end{cases}}\)
\(TH4:\hept{\begin{cases}x-7=-9\\xy+1=-1\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\y=1\end{cases}}\)
\(TH4:\hept{\begin{cases}x-7=3\\xy+1=3\end{cases}}\Rightarrow\hept{\begin{cases}x=10\\y=\frac{2}{10}\left(\text{loại}\right)\end{cases}}\)
\(TH5:\hept{\begin{cases}x-7=-3\\xy+1=-3\end{cases}}\Rightarrow\hept{\begin{cases}x=4\\y=-1\end{cases}}\)
\(\text{Vậy :}\left(x;y\right)\in\left\{\left(8;1\right);\left(16;0\right);\left(-2;1\right);\left(4;-1\right)\right\}\)