K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2021

Dễ thấy \(0< a,b,c< \frac{3}{2}\)

Thật vậy nếu g/s ngược lại tồn tại 1 số >= 3/2 và g/s đó là a

\(\Rightarrow a\ge b+c\) mâu thuẫn với BĐT tam giác nên ta có điều như trên

Ta có: \(\left(\frac{3}{2}-a\right)+\left(\frac{3}{2}-b\right)+\left(\frac{3}{2}-c\right)\ge3\sqrt[3]{\left(\frac{3}{2}-a\right)\left(\frac{3}{2}-b\right)\left(\frac{3}{2}-c\right)}\)

\(\Leftrightarrow\frac{9}{2}-\left(a+b+c\right)\ge3\sqrt[3]{\left(\frac{3}{2}-a\right)\left(\frac{3}{2}-b\right)\left(\frac{3}{2}-c\right)}\)

\(\Leftrightarrow\frac{1}{2}\ge\sqrt[3]{\left(\frac{3}{2}-a\right)\left(\frac{3}{2}-b\right)\left(\frac{3}{2}-c\right)}\)

\(\Leftrightarrow\frac{1}{8}\ge\left(\frac{3}{2}-a\right)\left(\frac{3}{2}-b\right)\left(\frac{3}{2}-c\right)\)

\(\Leftrightarrow\frac{1}{8}\ge\left(\frac{9}{4}-\frac{3}{2}a-\frac{3}{2}b+ab\right)\left(\frac{3}{2}-c\right)\)

\(\Leftrightarrow\frac{1}{8}\ge\frac{27}{8}-\frac{9}{4}\left(a+b+c\right)+\frac{3}{2}\left(ab+bc+ca\right)-abc\)

\(\Leftrightarrow\frac{1}{8}\ge\frac{27}{8}-\frac{27}{4}+\frac{3}{2}\left(ab+bc+ca\right)-abc\)

\(\Leftrightarrow\frac{3}{2}\left(ab+bc+ca\right)-abc\le\frac{7}{2}\)

\(\Leftrightarrow6\left(ab+bc+ca\right)-4abc\le14\)

\(\Leftrightarrow4abc\ge6\left(ab+bc+ca\right)-14\)

\(\Leftrightarrow3a^2+3b^2+3c^2+4abc\ge3\left(a+b+c\right)^2-14\)

\(\Leftrightarrow3a^2+3b^2+3c^2+4abc\ge13\)

Dấu "=" xảy ra khi: a = b = c = 1

14 tháng 2 2016

a^2+b^2+c^2+2ab+2cb+2ac-a^2-b^2-c^2-2abc>2

2ab+2ca+bc-2abc>2

 

15 tháng 2 2016

sao lại từ phần cần chứng minh nhân ra vậy.

Mà bạn làm mình ko hiểu

17 tháng 1 2022

Tham khảo:

https://hoc24.vn/cau-hoi/cho-a-b-c-la-do-dai-ba-canh-cua-mot-tam-giac-va-thoa-man-he-thuc-a-b-c-1-cmr-a2-b2-c2-12.139261258302

17 tháng 1 2022

áp dụng Hê rông nha mn❤

19 tháng 3 2022

thiếu dữ kiện?

NV
12 tháng 2 2020

Do a;b;c là 3 cạnh của tam giác nên:

\(abc\ge\left(a+b-c\right)\left(a+c-b\right)\left(b+c-a\right)\)

\(\Leftrightarrow abc\ge\left(3-2a\right)\left(3-2b\right)\left(3-2c\right)\)

\(\Leftrightarrow abc\ge27-8abc-18\left(a+b+c\right)+12\left(ab+bc+ca\right)\)

\(\Leftrightarrow9abc\ge12\left(ab+bc+ca\right)-27\)

\(\Leftrightarrow abc\ge\frac{4}{3}\left(ab+bc+ca\right)-3\)

\(\Rightarrow VT\ge3\left(a^2+b^2+c^2\right)+\frac{16}{3}\left(ab+bc+ca\right)-12\)

\(\Leftrightarrow VT\ge\frac{8}{3}\left(a^2+b^2+c^2+2ab+2bc+2ca\right)+\frac{1}{3}\left(a^2+b^2+c^2\right)-12\)

\(\Leftrightarrow VT\ge\frac{8}{3}\left(a+b+c\right)^2+\frac{1}{9}\left(a+b+c\right)^2-12=13\)