Cho tam giác ABC với AD là đường phân giác của góc A , biết AB = 6 cm , AC= 8 cm , BC = 10 cm . Tính BD và CD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABC có AD là phân giác
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)
=>\(\dfrac{BD}{6}=\dfrac{4}{8}=\dfrac{1}{2}\)
=>\(BD=\dfrac{6}{2}=3\left(cm\right)\)
Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
=>BD/8=CD/12
=>BD/2=CD/3
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{2}=\dfrac{CD}{3}=\dfrac{BD+CD}{2+3}=\dfrac{10}{5}=2\)
Do đó:BD=4(cm)
a: BD/AD=BC/AC=5/4
b: Xét ΔHBA và ΔABC có
góc BHA=góc BAC
góc B chung
=>ΔHBA đồng dạng với ΔABC
c: Xét ΔDAC và ΔDKB có
góc DAC=góc DKB
góc ADC=góc KDB
=>ΔDAC đồng dạng với ΔDKB
=>DA/DK=DC/DB
=>DA*DB=DK*DC
a, Xét tam giác ECD và tam giác ACB ta có
^CED = ^CAB = 900
^C _ chung
Vậy tam giác ECD ~ tam giác ACB ( g.g )
b, Áp dụng định lí Pytago ta có :
\(AB^2+AC^2=BC^2\Rightarrow AC^2=BC^2-AB^2=100-36=64\Rightarrow AC=8\)cm
Do BD là đường phân giác ^B
\(\Rightarrow\dfrac{AB}{BC}=\dfrac{AD}{DC}\) mà \(DC=AC-AD=8-AD\)
\(\Rightarrow\dfrac{6}{10}=\dfrac{AD}{8-AD}\Rightarrow48-6AD=10AD\Rightarrow16AD=48\Rightarrow AD=3\)cm
Vậy AD = 3 cm
c, Ta có : \(\dfrac{S_{ECD}}{S_{ACB}}=\dfrac{\dfrac{1}{2}ED.EC}{\dfrac{1}{2}AC.AB}=\dfrac{ED.EC}{6.8}=\dfrac{ED.EC}{48}\)(*)
\(\dfrac{EC}{AC}=\dfrac{ED}{AB}=\dfrac{CD}{BC}\)( tỉ số đồng dạng ý a )
\(\Rightarrow\dfrac{EC}{8}=\dfrac{5}{10}\)( CD = AC - AD = 8 - 3 = 5 cm )
\(\Rightarrow EC=\dfrac{40}{10}=4\) cm (1)
\(\Rightarrow\dfrac{ED}{AB}=\dfrac{CD}{BC}\Rightarrow ED=\dfrac{AB.CD}{BC}=\dfrac{6.5}{10}=3\)cm (2)
Thay (1) ; (2) vào (*) ta được :
\(\dfrac{S_{ECD}}{S_{ACB}}=\dfrac{3.4}{48}=\dfrac{12}{48}=\dfrac{1}{4}\)
a) ta có BD là pg => DA/DC=AB/AC=15/10=3/2
=> DA/3=DC/2=DA+DC/3+2=AC/5=15/5=3
=> DA=3.3=9 cm
DC=3.2=6 cm
b) ta có BE là pg ngoài=> EA/EC=AB/BC=15/10=3/2
=> EA/3=EC/2=EA-EC/3-2=AC/1=15/1=15
=> EC=15.2=30cm
Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
=>CD/8,5=3/5
hay CD=5,1(cm)
=>BC=13,6(cm)
Ta có :
AD là đường phân giác của \(\widehat{BAC}\)
=> \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)
=> \(\dfrac{5}{8,5}=\dfrac{3}{CD}\)
=> CD = 5,1 (cm)
Ta có : BC = BD + CD
=> BD = 3 + 5,1
=> BD = 8,1 (cm)
( tự vẽ hình nha )
a) Xét tam giác ABC và tam giác BHC có :
\(\widehat{ABC}=\widehat{BHC}\left(=90^o\right)\)
Chung \(\widehat{ACB}\)
\(\Rightarrow\) tam giác ABC đồng dạng với tam giác BHC ( g-g )
b) Áp dụng định lí Py-ta-go cho tam giác ABC vuông tại B ta có :
\(AC^2=AB^2+BC^2\)
\(\Leftrightarrow AC^2=100\)
\(\Leftrightarrow AC=10\left(cm\right)\)
Do tam giác ABC đồng dạng với tam giác BHC ta có :
\(\frac{AB}{BH}=\frac{AC}{BC}\Leftrightarrow\frac{6}{BH}=\frac{10}{8}\)
\(\Leftrightarrow BH=4,8\left(cm\right)\)
Do AD là phân giác \(\widehat{BAC}\)
\(\Rightarrow\frac{BD}{AB}=\frac{DC}{AC}=\frac{BD+DC}{AB+AC}=\frac{8}{16}=\frac{1}{2}\)
\(\Rightarrow\hept{\begin{cases}BD=3\left(cm\right)\\DC=5\left(cm\right)\end{cases}}\)
c) ( đề sai oy )
Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)(Tính chất tia phân giác của tam giác)
hay \(\dfrac{BD}{4}=\dfrac{CD}{6}\)
mà BD+CD=BC=4cm(D nằm giữa B và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{4}=\dfrac{CD}{6}=\dfrac{BD+CD}{4+6}=\dfrac{4}{10}=\dfrac{2}{5}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{BD}{4}=\dfrac{2}{5}\\\dfrac{CD}{6}=\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BD=\dfrac{8}{5}cm\\CD=\dfrac{12}{5}cm\end{matrix}\right.\)
Vậy: \(BD=\dfrac{8}{5}cm;CD=\dfrac{12}{5}cm\)
Áp dụng định lý Pi-ta-go, ta có:
\(BD^2=AB^2+AD^2=6^2+8^2=100\)
=> BD = 10 (cm)
AD là phân giác của góc A:
\(\Rightarrow\frac{BD}{CD}=\frac{AB}{AC}\)
\(\Rightarrow\frac{BD}{CD}=\frac{6}{8}=\frac{3}{4}\)
\(\Rightarrow\frac{BD}{3}=\frac{CD}{4}\)
Mà: \(BD+CD=10\Rightarrow\frac{BD}{3}=\frac{CD}{4}=\frac{\left(BD+DB\right)}{7}=\frac{10}{7}\)
\(\Rightarrow BD=\frac{10}{7}.3=\frac{30}{7}\left(cm\right)\)
\(\Rightarrow CD=\frac{10}{7}.4=\frac{40}{7}\left(cm\right)\)
Cho hình vẽ bên: Biết BD CE AB AC a) Chứng minh AD AE AB AC b) Cho biết AD=2cm, BD=1cm và AC 4cm . Tính EC.