Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABC có AD là phân giác
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)
=>\(\dfrac{BD}{6}=\dfrac{4}{8}=\dfrac{1}{2}\)
=>\(BD=\dfrac{6}{2}=3\left(cm\right)\)
Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
=>BD/8=CD/12
=>BD/2=CD/3
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{2}=\dfrac{CD}{3}=\dfrac{BD+CD}{2+3}=\dfrac{10}{5}=2\)
Do đó:BD=4(cm)
a: BD/AD=BC/AC=5/4
b: Xét ΔHBA và ΔABC có
góc BHA=góc BAC
góc B chung
=>ΔHBA đồng dạng với ΔABC
c: Xét ΔDAC và ΔDKB có
góc DAC=góc DKB
góc ADC=góc KDB
=>ΔDAC đồng dạng với ΔDKB
=>DA/DK=DC/DB
=>DA*DB=DK*DC
a, Xét tam giác ECD và tam giác ACB ta có
^CED = ^CAB = 900
^C _ chung
Vậy tam giác ECD ~ tam giác ACB ( g.g )
b, Áp dụng định lí Pytago ta có :
\(AB^2+AC^2=BC^2\Rightarrow AC^2=BC^2-AB^2=100-36=64\Rightarrow AC=8\)cm
Do BD là đường phân giác ^B
\(\Rightarrow\dfrac{AB}{BC}=\dfrac{AD}{DC}\) mà \(DC=AC-AD=8-AD\)
\(\Rightarrow\dfrac{6}{10}=\dfrac{AD}{8-AD}\Rightarrow48-6AD=10AD\Rightarrow16AD=48\Rightarrow AD=3\)cm
Vậy AD = 3 cm
c, Ta có : \(\dfrac{S_{ECD}}{S_{ACB}}=\dfrac{\dfrac{1}{2}ED.EC}{\dfrac{1}{2}AC.AB}=\dfrac{ED.EC}{6.8}=\dfrac{ED.EC}{48}\)(*)
\(\dfrac{EC}{AC}=\dfrac{ED}{AB}=\dfrac{CD}{BC}\)( tỉ số đồng dạng ý a )
\(\Rightarrow\dfrac{EC}{8}=\dfrac{5}{10}\)( CD = AC - AD = 8 - 3 = 5 cm )
\(\Rightarrow EC=\dfrac{40}{10}=4\) cm (1)
\(\Rightarrow\dfrac{ED}{AB}=\dfrac{CD}{BC}\Rightarrow ED=\dfrac{AB.CD}{BC}=\dfrac{6.5}{10}=3\)cm (2)
Thay (1) ; (2) vào (*) ta được :
\(\dfrac{S_{ECD}}{S_{ACB}}=\dfrac{3.4}{48}=\dfrac{12}{48}=\dfrac{1}{4}\)
a) ta có BD là pg => DA/DC=AB/AC=15/10=3/2
=> DA/3=DC/2=DA+DC/3+2=AC/5=15/5=3
=> DA=3.3=9 cm
DC=3.2=6 cm
b) ta có BE là pg ngoài=> EA/EC=AB/BC=15/10=3/2
=> EA/3=EC/2=EA-EC/3-2=AC/1=15/1=15
=> EC=15.2=30cm
Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
=>CD/8,5=3/5
hay CD=5,1(cm)
=>BC=13,6(cm)
Ta có :
AD là đường phân giác của \(\widehat{BAC}\)
=> \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)
=> \(\dfrac{5}{8,5}=\dfrac{3}{CD}\)
=> CD = 5,1 (cm)
Ta có : BC = BD + CD
=> BD = 3 + 5,1
=> BD = 8,1 (cm)
( tự vẽ hình nha )
a) Xét tam giác ABC và tam giác BHC có :
\(\widehat{ABC}=\widehat{BHC}\left(=90^o\right)\)
Chung \(\widehat{ACB}\)
\(\Rightarrow\) tam giác ABC đồng dạng với tam giác BHC ( g-g )
b) Áp dụng định lí Py-ta-go cho tam giác ABC vuông tại B ta có :
\(AC^2=AB^2+BC^2\)
\(\Leftrightarrow AC^2=100\)
\(\Leftrightarrow AC=10\left(cm\right)\)
Do tam giác ABC đồng dạng với tam giác BHC ta có :
\(\frac{AB}{BH}=\frac{AC}{BC}\Leftrightarrow\frac{6}{BH}=\frac{10}{8}\)
\(\Leftrightarrow BH=4,8\left(cm\right)\)
Do AD là phân giác \(\widehat{BAC}\)
\(\Rightarrow\frac{BD}{AB}=\frac{DC}{AC}=\frac{BD+DC}{AB+AC}=\frac{8}{16}=\frac{1}{2}\)
\(\Rightarrow\hept{\begin{cases}BD=3\left(cm\right)\\DC=5\left(cm\right)\end{cases}}\)
c) ( đề sai oy )
Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)(Tính chất tia phân giác của tam giác)
hay \(\dfrac{BD}{4}=\dfrac{CD}{6}\)
mà BD+CD=BC=4cm(D nằm giữa B và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{4}=\dfrac{CD}{6}=\dfrac{BD+CD}{4+6}=\dfrac{4}{10}=\dfrac{2}{5}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{BD}{4}=\dfrac{2}{5}\\\dfrac{CD}{6}=\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BD=\dfrac{8}{5}cm\\CD=\dfrac{12}{5}cm\end{matrix}\right.\)
Vậy: \(BD=\dfrac{8}{5}cm;CD=\dfrac{12}{5}cm\)
Áp dụng định lý Pi-ta-go, ta có:
\(BD^2=AB^2+AD^2=6^2+8^2=100\)
=> BD = 10 (cm)
AD là phân giác của góc A:
\(\Rightarrow\frac{BD}{CD}=\frac{AB}{AC}\)
\(\Rightarrow\frac{BD}{CD}=\frac{6}{8}=\frac{3}{4}\)
\(\Rightarrow\frac{BD}{3}=\frac{CD}{4}\)
Mà: \(BD+CD=10\Rightarrow\frac{BD}{3}=\frac{CD}{4}=\frac{\left(BD+DB\right)}{7}=\frac{10}{7}\)
\(\Rightarrow BD=\frac{10}{7}.3=\frac{30}{7}\left(cm\right)\)
\(\Rightarrow CD=\frac{10}{7}.4=\frac{40}{7}\left(cm\right)\)
Cho hình vẽ bên: Biết BD CE AB AC a) Chứng minh AD AE AB AC b) Cho biết AD=2cm, BD=1cm và AC 4cm . Tính EC.