Tìm x biết
\(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+......+\frac{2}{x\left(x+1\right)}=\frac{2003}{2005}\)
PS : Không cần làm đẹp, càng nhanh càng tốt, quan trọng là đúng!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=1\frac{2003}{2005}\)
\(\frac{2}{2}+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{4008}{2005}\)
\(2.\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{x\left(x+1\right)}\right)=\frac{4008}{2005}\)
\(2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{4008}{2005}\)
\(=>2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{4008}{2005}\)
\(2.\left(1-\frac{1}{x+1}\right)=\frac{4008}{2005}\)
=> \(1-\frac{1}{x+1}=\frac{4008}{2005}:2=\frac{2004}{2005}\)
\(\frac{1}{x+1}=1-\frac{2004}{2005}=\frac{1}{2005}\)
=>x+1=2005
=>x=2004
Từ công thức:\(1+2+........+n=\frac{n.\left(n+1\right)}{2}\)
Cho \(n\in\)N*.CMR:\(\frac{1}{n}.\left(1+2+...+n\right)=\frac{n+1}{2}\)
Ta có:\(\frac{1}{n}.\left(1+2+......+n\right)=\frac{1}{n}.\frac{n\left(n+1\right)}{2}=\frac{n+1}{2}\)
Ta có:\(1+\frac{1}{2}\left(1+2\right)+......+\frac{1}{20}.\left(1+2+.....+20\right)\)
\(=1+\frac{1}{2}.\frac{2\left(2+1\right)}{2}+\frac{1}{3}.\frac{3.\left(3+1\right)}{2}+........+\frac{1}{20}.\frac{20\left(20+1\right)}{2}\)
\(=1+\frac{3}{2}+...............+\frac{21}{2}\)
\(=\frac{2+3+......+21}{2}\)
\(=\frac{230}{2}=165\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2003}{2005}\)
\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2003}{2005}\)
\(\Leftrightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2003}{2005}\)
\(\Leftrightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2003}{2005}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2003}{2005}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2003}{2005}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2003}{4010}\)
\(\Leftrightarrow\frac{x+1-2}{2\left(x+1\right)}=\frac{2003}{4010}\)
\(\Leftrightarrow2003.2\left(x+1\right)=4010\left(x-1\right)\)
\(\Leftrightarrow4006x+4006=4010x-4010\)
\(\Leftrightarrow-4x=-8016\)
\(\Leftrightarrow x=2004\)
Vậy x = 2004
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x.\left(x+1\right)}=\frac{2003}{2005}\)
\(\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x.\left(x+1\right)}\right).\frac{1}{2}=\frac{2003}{2005}.\frac{1}{2}\)
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{2}{x.\left(x+1\right).2}=\frac{2003}{4020}\)
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x.\left(x+1\right)}=\frac{2003}{4020}\)
\(\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{\left(x+1\right)-x}{x.\left(x+1\right)}=\frac{2003}{4020}\)
\(\frac{3}{2.3}-\frac{2}{2.3}+\frac{4}{3.4}-\frac{3}{3.4}+...+\frac{x+1}{\left(x+1\right).x}-\frac{x}{\left(x+1\right).x}=\frac{2003}{4020}\)
\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{\left(x+1\right)}=\frac{2003}{4020}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{2003}{4020}\)
\(\frac{1}{x+1}=\frac{1}{2}-\frac{2003}{4020}=\frac{7}{4020}\)
\(\frac{7}{\left(x+1\right).7}=\frac{7}{4020}\)
\(\left(x+1\right).7=4020\)
\(\Rightarrow x=....\)
\(=\frac{2^2-1}{2^2}\cdot\frac{3^2-1}{3^2}\cdot\cdot\cdot\frac{2016^2-1}{2016^2}=\frac{1.3}{2.3}\cdot\frac{2.4}{3.3}\cdot\cdot\cdot\cdot\frac{2015.2017}{2016.2016}\)
\(=\frac{\left(1.2.3....2015\right).\left(3.4....2016.2017\right)}{\left(2.3....2016\right)\left(2.3......2015.2016\right)}=\frac{2017}{2.2016}=\frac{2017}{4032}\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right)\div2}=\frac{2001}{2003}\)
\(\frac{1}{2}\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right)\div2}\right)=\frac{1}{2}\cdot\frac{2001}{2003}\)
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2001}{4006}\)
\(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\left(x+1\right)}=\frac{2001}{4006}\)
\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2001}{4006}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{2001}{4006}\)
\(\frac{1}{x+1}=\frac{1}{2}-\frac{2001}{4006}\)
\(\frac{1}{x+1}=\frac{1}{2003}\)
\(\Rightarrow x+1=2003\)
\(x=2002\)
Vậy x = 2002
Theo đề ra ,ta có :
- 1 / 12 < x < 1 / 8 mà x có giá trị nguyên
=> x = 0
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.....+\frac{2}{x\left(x+1\right)}=\frac{2003}{2005}\)
\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+....+\frac{2}{x\left(x+1\right)}\right)=\frac{1}{2}.\frac{2003}{2005}\)
\(\Leftrightarrow\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+.....+\frac{1}{x\left(x+1\right)}=\frac{2003}{4010}\)
\(\Leftrightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{x\left(x+1\right)}=\frac{2003}{4010}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{x}-\frac{1}{x+1}=\frac{2003}{4010}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2003}{4010}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2003}{4010}=\frac{1}{2005}\)
\(\Rightarrow x+1=2005\Rightarrow x=2004\)
Ta có :
\(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right)}=\frac{2003}{2005}\)
\(\Leftrightarrow\)\(1+2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2003}{2005}\)
\(\Leftrightarrow\)\(1+2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2003}{2005}\)
\(\Leftrightarrow\)\(1+2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2003}{2005}\)
\(\Leftrightarrow\)\(1+2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2003}{2005}\)
\(\Leftrightarrow\)\(1+1-\frac{2}{x+1}=\frac{2003}{2005}\)
\(\Leftrightarrow\)\(\frac{2}{x+1}=2-\frac{2003}{2005}\)
\(\Leftrightarrow\)\(\frac{2}{x+1}=\frac{2007}{2005}\)
\(\Leftrightarrow\)\(x+1=2:\frac{2007}{2005}\)
\(\Leftrightarrow\)\(x+1=\frac{4010}{2007}\)
\(\Leftrightarrow\)\(x=\frac{4010}{2007}-1\)
\(\Leftrightarrow\)\(x=\frac{2003}{2007}\)
Vậy \(x=\frac{2003}{2007}\)
Chúc bạn học tốt ~