Cho A=21+22+23+.......+2100
a,Tính tổng A
b,CMR:A chia hết cho 30
c,CMR:A không chia hết cho 14
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mấy bạn làm hộ mình nha , bài khó quá không biết làm thế nào nữa.Xin trân thành cảm ơn nếu các bạn làm chi tiết.
A=4+42+...+424
=(4+42)+...+(423+424)
=4.(4+42)+...+423.(4+42)
=4.20+...+423.20
=20.(4+...+423) chia het cho 20
A=4+42+...+424
=(4+42+43)+...+(422+423+424)
=4.(1+4+42)+...+422.(1+4+42)
=4.21+...+422.21
=21.(4+...+422) chia het cho 21
cảm ơn bạn rất nhìu
lúc đầu mk cứ tưởng phải gấp A lên cơ
nên tính mãi ko ra
A,GỌI 3 SỐ LÀ:N,N+1,N+2
N+N+1+N+2=3N+3 CHIA HẾT CHO 3
B,GỌI 4 SỐ LÀ:N,N+1,N+2,N+3
N+N+1+N+2+N+3=4N+6 KHÔNG CHIA HẾT CHO 4
NOTE ĐÚNG
a, ab+ba = 10a+b+10b+a = 11a+11b = 11.(a+b) chia hết cho 11
b, ab-bc = 10a+b-(10b+a) = 9a-9b = 9.(a-b) chia hết cho 9
k mk nha
a) ab + ba = ( 10a + b ) + ( 10b + a ) = 11 + 11b = 11 . ( a + b ) \(⋮\)11
vậy ab + ba \(⋮\)11
b) ab - ba = ( 10a + b ) - ( 10b + a ) = 9a - 9b = 9 . ( a - b ) \(⋮\)9
Vậy ab - ba \(⋮\)9
Bài 3:
a) Ta có: \(C=2+2^2+2^3+...+2^{99}+2^{100}\)
\(=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(=2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)
\(=31\cdot\left(2+2^6+...+2^{96}\right)⋮31\)(đpcm)
Bài 1:
Ta có: \(A=3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n\cdot9-2^n\cdot4+3^n-2^n\)
\(=3^n\left(9+1\right)-2^n\left(4+1\right)\)
\(=10\left(3^n-2^{n-1}\right)⋮10\)
Vậy: A có chữ số tận cùng là 0
Bài 2:
Ta có: \(abcd=1000\cdot a+100\cdot b+10\cdot c+d\)
\(\Leftrightarrow abcd=1000\cdot a+96\cdot b+8c+2c+4b+d\)
\(\Leftrightarrow abcd=8\left(125a+12b+c\right)+\left(2c+4b+d\right)\)
mà \(8\left(125a+12b+c\right)⋮8\)
và \(2c+4b+d⋮8\)
nên \(abcd⋮8\)(đpcm)
Nếu n lẻ => n + 4 lẻ và n + 5 chẵn => (n + 4)(n + 5) chẵn => A = (n + 4)(n + 5) ⋮ 2 (1)
Nếu n chẵn => n + 4 chẵn và n + 5 lẻ => (n + 4)(n + 5) chẵn => A = (n + 4)(n + 5) ⋮ 2 (2)
Từ (1) ; (2) => A = (n + 4)(n + 5) ⋮ 2 ( đpcm )
B = n2 + n + 5 = n(n + 1) + 5
Vì n(n + 1) là tích 2 số nguyên liên tiếp => n(n + 1) ⋮ 2
Mà 5 không chia hết cho 2
=> n(n + 1) + 5 không chia hết cho 2
Hay n2 + n + 5 không chia hết cho 2 (đpcm)
Lời giải:
a.
$A=2+2^2+2^3+...+2^{100}$
$2A=2^2+2^3+2^4+...+2^{101}$
$\Rightarrow 2A-A=2^{101}-2$
$\Rightarrow A=2^{101}-2$
b.
Hiển nhiên các số hạng của $A$ đều chẵn nên $A\vdots 2(1)$
Mặt khác:
$A=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+....+(2^{97}+2^{98}+2^{99}+2^{100})$
$=2(1+2+2^2+2^3)+2^5(1+2+2^2+2^3)+....+2^{97}(1+2+2^2+2^3)$
$=(1+2+2^2+2^3)(2+2^5+...+2^{97})=15(2+2^5+...+2^{97})\vdots 15(2)$
Từ $(1); (2)$ mà $(2,15)=1$ nên $A\vdots (2.15)$ hay $A\vdots 30$
$A=2+(2^2+2^3+2^4)+(2^5+2^6+2^7)+....+(2^{98}+2^{99}+2^{100})$
$=2+2^2(1+2+2^2)+2^5(1+2+2^2)+....+2^{98}(1+2+2^2)$
$=2+(1+2+2^2)(2^2+2^5+...+2^{98})$
$=2+7(2^2+2^5+...+2^{98})$
$\Rightarrow A$ không chia hết cho 7
$\Rightarrow A$ không chia hết cho 14.