K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2018

Ta có : 

\(S=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}>\frac{1}{10}+\frac{1}{10}+...+\frac{1}{10}=9.\frac{1}{10}=\frac{9}{10}\) ( vì 9 số \(\frac{1}{10}\) ) 

\(\Rightarrow\)\(S>\frac{9}{10}\)

Vậy \(S>\frac{9}{10}\)

Chúc bạn học tốt ~ 

18 tháng 3 2018

Ta có:S= 1/2+1/3+1/4+...+1/10>1/10+1/10+..+1/10(9 số 10)

=> S> 9/10

mk nghĩ là vậy

28 tháng 6 2016

\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}+\frac{3}{43.46}\)

\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}\)

\(S=1-\frac{1}{46}< 1\)

Chứng tỏ S < 1

Ủng hộ mk nha ^_^

28 tháng 6 2016

S = \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+......+\frac{3}{43.46}\)

  \(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{43}-\frac{1}{46}\)

   \(=1-\frac{1}{46}=\frac{45}{46}< 1\)

31 tháng 12 2018

Bài này sai rồi bạn ơi

Vì các số hạng của dãy S toàn là số dương làm sao mà tổng là 1 số âm đc

31 tháng 12 2018

sai :) 
Vì tổng các số nguyên dương luôn là một số nguyên dương 

5 tháng 12 2018

S = 1 + 2 + 2+ 23 + ..... + 29

2S = 2 + 22 + 2+ .... + 29 + 210

2S - S = ( 2 + 22 + 2+ .... + 29 + 210 ) - ( 1 + 2 + 2+ 23 + ..... + 2)

S = 210 - 1

Ta có :

5 . 28 = ( 4 + 1 ) . 28 = ( 22 + 1 ) . 28 = 22 . 28 + 1 . 28 = 210 + 28

=> 210 - 1 < 210 + 28

=> S < 210  + 28

5 tháng 12 2018

ta có s=1+2+2^2+2^3+2^4+...+2^9

=>2s=2+2^2+2^3+2^4+...+2^10

=>s=(2^10-1)/2=2^9-1/2

đến đoạn này chắc bn so sánh đc rồi

26 tháng 7 2018

A, 910 -4/910- 5

= (9-4/9)10- 5

= 77/910 - 5

910 - 2/910 - 3

=( 9-2/9 )10 - 3

= 79/910 -3

vì 77/9

26 tháng 7 2018

a) Ta có: \(1-\frac{9^{10}-4}{9^{10}-5}=\frac{-1}{9^{10}-5}\)

                \(1-\frac{9^{10}-2}{9^{10}-3}=\frac{-1}{9^{10}-3}\)

Vì     \(\frac{-1}{9^{10}-5}< \frac{-1}{9^{10}-3}\Rightarrow1-\frac{9^{10}-4}{9^{10}-5}< 1-\frac{9^{10}-2}{9^{10}-3}\)

\(\Rightarrow\frac{9^{10}-4}{9^{10}-5}>\frac{9^{10}-2}{9^{10}-3}\).

b) Ta có:    \(1-\frac{2.7^{10}-1}{7^{10}}=\frac{7^{10}+1}{7^{10}}\)

                  \(1-\frac{2.7^{10}+1}{7^{10}+1}=\frac{7^{10}}{7^{10}+1}\)

Vì   \(\frac{7^{10}+1}{7^{10}}>\frac{7^{10}}{7^{10}+1}\Rightarrow1-\frac{2.7^{10}-1}{7^{10}}>1-\frac{2.7^{10}+1}{7^{10}+1}\)

\(\Rightarrow\frac{2.7^{10}-1}{7^{10}}< \frac{2.7^{10}+1}{7^{10}+1}\)

6 tháng 5 2017

A=\(\frac{10^{2015}+1}{10^{2016}+1}\)=>10A=\(\frac{10.\left(10^{2015}+1\right)}{10^{2016}+1}\)\(\frac{10^{2016}+10}{10^{2016}+1}\)=\(\frac{\left(10^{2016}+1\right)+9}{10^{2016}+1}\)=\(\frac{10^{2016}+1}{10^{2016}+1}+\frac{9}{10^{2016}+1}\)=1+\(\frac{9}{10^{2016}+1}\)

B=\(\frac{10^{2016}+1}{10^{2017}+1}\)=>10B=\(\frac{10.\left(10^{2016}+1\right)}{10^{2017+1}}=\frac{10^{2017}+10}{10^{2017}+1}\)\(\frac{\left(10^{2017}+1\right)+9}{10^{2017}+1}\)=\(\frac{10^{2017}+1}{10^{2017}+1}+\frac{9}{10^{2017}+1}\)= 1+\(\frac{9}{10^{2017}+1}\)

Vì \(10^{2016}+1< 10^{17}+1\)=>\(\frac{9}{10^{2016}+1}\)>\(\frac{9}{10^{2017}+1}\)nên \(1+\frac{9}{10^{2016}+1}>1+\frac{9}{10^{2017}+1}\)=>10A>10B

Vậy A>B

7 tháng 5 2017

Cảm ơn bạn nhìu nhé.

I don't now

or no I don't

..................

sorry

11 tháng 7 2017

sử dung kết hop