K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2018

Ta có:

a^2+b^2=(a+b)^2-2ab; 
c^2+d^2=(c+d)^2-2cd. 

Suy ra a^2+b^2 và a+b cùng chẵn, hoặc cùng lẻ; 
c^2+d^2 cùng chẵn hoặc cùng lẻ. Kết hợp với 
a^2+b^2=c^2+d^2 ta suy ra a+b và c+d cùng chẵn, 
hoặc cùng lẻ. Từ đó a+b+c+d chẵn, và vì 
a+b+c+d>=4 nên a+b+c+d là hợp số.

     

18 tháng 3 2018

Mình chắc chắn là hợp số

13 tháng 2 2020

Câu hỏi của Lê Linh An - Toán lớp 6 - Học toán với OnlineMath

28 tháng 2 2020

Xét :\(\left(a^2+b^2+c^2+d^2\right)+\left(a+b+c+d\right)\)

\(=\left(a^2+a\right)+\left(b^2+b\right)+\left(c^2+c\right)+\left(d^2+d\right)\)

\(=a.\left(a+1\right)+b.\left(b+1\right)+c.\left(c+1\right)+d.\left(d+1\right)\)

Ta có : \(a.\left(a+1\right);b.\left(b+1\right);c.\left(c+1\right);d.\left(d+1\right)\) là tích của hai số nguyên dương liên tiếp .Do đó chúng chia hết cho \(2\)

\(\implies\) \(\left(a^2+b^2+c^2+d^2\right)+\left(a+b+c+d\right)\) chia hết cho \(2\)

Mà \(a^2+b^2+c^2+d^2=2.\left(b^2+d^2\right)\) chia hết cho \(2\)

  \(\implies\)  \(a+b+c+d\) chia hết cho \(2\)

Mà \(a+b+c+d\) \(\geq\)   \(4\)  \(\implies\) \(a+b+c+d\) là hợp số \(\left(đpcm\right)\) 

11 tháng 4 2017

Xét ( a2 + b2 + c2 + d2 ) - ( a + b + c + d)

= a(a -1) + b( b -1) + c( c – 1) + d( d – 1)

Vì a là số nguyên dương nên a, (a – 1) là hai số tự nhiên liên tiếp

=> a(a-1) chia hết cho 2. Tương tự ta có b(b-1); c(c-1); d(d-1) đều chia hết cho 2

=> a(a -1) + b( b -1) + c( c – 1) + d( d – 1) là số chẵn

Lại có a2 + c2 = b2 + d2=> a2 + b2 + c2 + d2 = 2( b2 + d2) là số chẵn.

Do đó a + b + c + d là số chẵn mà a + b + c + d > 2 (Do a, b, c, d thuộc N*)

a + b + c + d là hợp số.

~ Chúc bn học tốt ~

18 tháng 2 2020

Ta có: \(a^2+b^2+c^2=d^2+e^2+g^2\Leftrightarrow a^2+b^2+c^2+d^2+e^2+g^2=2\left(a^2+b^2+c^2\right)\)

\(\Rightarrow a^2+b^2+c^2+d^2+e^2+g^2⋮2\left(1\right)\)

Lại có \(a^2-a=a\left(a-1\right)⋮2\)

Tương tự \(b^2-b,c^2-c,d^2-d,e^2-e,g^2-g⋮2\)

\(\Leftrightarrow\left(a^2+b^2+c^2+d^2+e^2+g^2\right)-\left(a+b+c+d+e+g\right)⋮2\left(2\right)\)

Từ (1) và (2) \(\Leftrightarrow a+b+c+d+e+g⋮2\)

30 tháng 3 2017

là số nguyên tố

22 tháng 2 2018

la so nguyen to tk cho minh di

16 tháng 5 2022

Xét : \(\left(a^2+b^2+c^2+d^2\right)-\left(a+b+c+d\right)\)

 

        \(=a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+d\left(d-1\right)\)

 

Vì \(a\) là  số nguyên dương nên \(a,\left(a-1\right)\) là hai số tự nhiên liên tiếp . 

 

\(\Rightarrow a\left(a-1\right)\) chia hết cho 2. Tương tự ta có : \(b\left(b-1\right);c\left(c-1\right);d\left(d-1\right)\) đều chia hết cho 2.

 

\(\Rightarrow a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+d\left(d-1\right)\) là số chẵn . 

 

Lại có : \(a^2+c^2=b^2+d^2\Rightarrow a^2+b^2+c^2+d^2=2\left(b^2+d^2\right)\) là số chẵn .

 

Do đó : \(a+b+c+d\) là số chẵn mà \(a+b+c+d>2\) (Do \(a,b,c,d\inℕ^∗\))

 

Vậy : \(a+b+c+d\) là hợp số .

29 tháng 3

Xét : (�2+�2+�2+�2)−(�+�+�+�)

        =�(�−1)+�(�−1)+�(�−1)+�(�−1)

Vì  là  số nguyên dương nên �,(�−1) là hai số tự nhiên liên tiếp . 

⇒�(�−1) chia hết cho 2. Tương tự ta có : �(�−1);�(�−1);�(�−1) đều chia hết cho 2.

⇒�(�−1)+�(�−1)+�(�−1)+�(�−1) là số chẵn . 

Lại có : �2+�2=�2+�2⇒�2+�2+�2+�2=2(�2+�2) là số chẵn .

Do đó : �+�+�+� là số chẵn mà �+�+�+�>2 (Do �,�,�,�∈N∗)

Vậy : �+�+�+� là hợp số .

AH
Akai Haruma
Giáo viên
30 tháng 1 2023

Lời giải:
$a^2+b^2+c^2+d^2=(a+b)^2-2ab+(c+d)^2-2cd$
$=(a+b)^2+(c+d)^2-2ab-2cd$

$=(a+b+c+d)^2-2(a+b)(c+d)-2ab-2cd\vdots 2$

$\Rightarrow (a+b+c+d)^2\vdots 2$

$\Rightarrow a+b+c+d\vdots 2$

Mà $a,b,c,d$ là số nguyên dương nên $a+b+c+d>2$

Vậy $a+b+c+d$ là số chẵn lớn hơn 2, do đó nó là hợp số (đpcm)

3 tháng 4 2016

Câu hỏi nài có trên OLM  rồi .

17 tháng 3 2016

theo mình là hợp số 

5 tháng 7 2016

Xét hiệu\(\left(a^2+b^2+c^2+d^2+e^2\right)-\left(a+b+c+d+e\right)=\)