K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2018

a 3 

b77779 nha !

20 tháng 11 2021

\(a,\Leftrightarrow x^2-x-x^2+6x+16=1\\ \Leftrightarrow5x=-15\Leftrightarrow x=-3\\ b,\Leftrightarrow2x\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

26 tháng 10 2021

a)2x-1=x+1

x=2

Vậy x=2

26 tháng 10 2021

b)\(\sqrt{x+3}=\sqrt{25}\)

x+3=5

x=2

Vậy x=2

5 tháng 10 2021

Với \(x\ge\dfrac{1}{6}\Leftrightarrow A=5x^2-6x+1-1=5x^2-6x\)

\(A=5\left(x^2-2\cdot\dfrac{3}{5}x+\dfrac{9}{25}\right)-\dfrac{9}{5}=5\left(x-\dfrac{3}{5}\right)^2-\dfrac{9}{5}\ge-\dfrac{9}{5}\\ A_{min}=-\dfrac{9}{5}\Leftrightarrow x=\dfrac{3}{5}\left(1\right)\)

Với \(x< \dfrac{1}{6}\Leftrightarrow A=5x^2+6x-1-1=5x^2+6x-2\)

\(A=5\left(x^2+2\cdot\dfrac{3}{5}x+\dfrac{9}{25}\right)-\dfrac{19}{5}=5\left(x+\dfrac{3}{5}\right)^2-\dfrac{19}{5}\ge-\dfrac{19}{5}\\ A_{min}=-\dfrac{19}{5}\Leftrightarrow x=-\dfrac{3}{5}\left(2\right)\\ \left(1\right)\left(2\right)\Leftrightarrow A_{min}=-\dfrac{19}{5}\Leftrightarrow x=-\dfrac{3}{5}\)

5 tháng 10 2021

Với \(x\ge\dfrac{1}{3}\Leftrightarrow B=9x^2-6x-4\left(3x-1\right)+6=9x^2-18x+10\)

\(B=9\left(x^2-2x+1\right)+1=9\left(x-1\right)^2+1\ge1\\ B_{min}=1\Leftrightarrow x=1\left(1\right)\)

Với \(x< \dfrac{1}{3}\Leftrightarrow B=9x^2-6x+4\left(3x-1\right)+6=9x^2+6x+2\)

\(B=\left(9x^2+6x+1\right)+1=\left(3x+1\right)^2+1\ge1\\ B_{min}=1\Leftrightarrow x=-\dfrac{1}{3}\left(2\right)\)

\(\left(1\right)\left(2\right)\Leftrightarrow B_{min}=1\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)

a: \(=\dfrac{x-2x-1}{x+1}=\dfrac{-\left(x+1\right)}{x+1}=-1\)

b: \(=\dfrac{2+2x}{x\left(x+1\right)}=\dfrac{2\left(x+1\right)}{x\left(x+1\right)}=\dfrac{2}{x}\)

c: \(=\dfrac{3x-1}{2\left(3x+1\right)}+\dfrac{3x+1}{2\left(3x-1\right)}-\dfrac{6x}{\left(3x-1\right)\left(3x+1\right)}\)

\(=\dfrac{9x^2-6x+1+9x^2+6x+1-12x}{2\left(3x-1\right)\left(3x+1\right)}=\dfrac{18x^2-12x+2}{2\left(3x-1\right)\left(3x+1\right)}\)

\(=\dfrac{2\left(3x-1\right)^2}{2\left(3x-1\right)\left(3x+1\right)}=\dfrac{3x-1}{3x+1}\)

18 tháng 8 2021

a)(2x-3)(x+5)=0

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-5\end{matrix}\right.\)

Vậy x=3/2 hoặc x=-5

18 tháng 8 2021

a) \(\left(2x-3\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\x+5=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-5\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là: \(S=\left\{\dfrac{3}{2};-5\right\}\)

b) \(3x\left(x-2\right)-7\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(3x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-7=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{7}{2}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là: \(S=\left\{2;\dfrac{7}{2}\right\}\)

c) \(5x\left(2x-3\right)-6x+9=0\)

\(\Leftrightarrow5x\left(2x-3\right)-3\left(2x-3\right)=0\)

\(\Leftrightarrow\left(2x-3\right)\left(5x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\5x-3=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{3}{5}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là: \(S=\left\{\dfrac{3}{2};\dfrac{3}{5}\right\}\)

10 tháng 11 2023

a: A<1

=>A-1<0

=>\(\dfrac{\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}-3}< 0\)

=>\(\dfrac{4}{\sqrt{x}-3}< 0\)

=>\(\sqrt{x}-3< 0\)

=>\(\sqrt{x}< 3\)

=>0<=x<9

b: Để A<=2 thì A-2<=0

=>\(\dfrac{\sqrt{x}+1-2\sqrt{x}+6}{\sqrt{x}-3}< =0\)

=>\(\dfrac{-\sqrt{x}+7}{\sqrt{x}-3}< =0\)

=>\(\dfrac{\sqrt{x}-7}{\sqrt{x}-3}>=0\)

TH1: \(\left\{{}\begin{matrix}\sqrt{x}-7>=0\\\sqrt{x}-3>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\sqrt{x}>=7\\\sqrt{x}>3\end{matrix}\right.\)

=>\(\sqrt{x}>=7\)

=>x>=49

TH2: \(\left\{{}\begin{matrix}\sqrt{x}-7< =0\\\sqrt{x}-3< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\sqrt{x}< =7\\\sqrt{x}< 3\end{matrix}\right.\)

=>\(\sqrt{x}< 3\)

=>0<=x<9

20 tháng 10 2023

a: \(\left(x+1\right)\left(y+2\right)=4\)

=>\(\left(x+1;y+2\right)\in\left\{\left(1;4\right);\left(4;1\right);\left(-2;-2\right);\left(2;2\right);\left(-1;-4\right);\left(-4;-1\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(0;2\right);\left(3;-1\right);\left(-3;-4\right);\left(1;0\right);\left(-2;-6\right);\left(-5;-3\right)\right\}\)

b: \(\left(2x-1\right)\left(y-1\right)=7\)

=>\(\left(2x-1;y-1\right)\in\left\{\left(1;7\right);\left(7;1\right);\left(-1;-7\right);\left(-7;-1\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(1;8\right);\left(4;2\right);\left(0;-6\right);\left(-3;0\right)\right\}\)

c: \(x+6=y\left(x-1\right)\)

=>\(x-1+7=y\left(x-1\right)\)

=>\(\left(x-1\right)\left(1-y\right)=-7\)

=>\(\left(x-1\right)\left(y-1\right)=7\)

=>\(\left(x-1;y-1\right)\in\left\{\left(1;7\right);\left(7;1\right);\left(-1;-7\right);\left(-7;-1\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(2;8\right);\left(8;2\right);\left(0;-6\right);\left(-6;0\right)\right\}\)

d: \(2xy+6x+y=1\)

=>\(2x\left(y+3\right)+y+3=4\)

=>\(\left(2x+1\right)\left(y+3\right)=4\)

=>\(\left(2x+1;y+3\right)\in\left\{\left(1;4\right);\left(-1;-4\right);\left(4;1\right);\left(-4;-1\right);\left(2;2\right);\left(-2;-2\right)\right\}\)

=>\(\left(x;y\right)\in\left\{\left(0;1\right);\left(-1;-7\right);\left(\dfrac{3}{2};-2\right);\left(-\dfrac{5}{2};-4\right);\left(\dfrac{1}{2};-1\right);\left(-\dfrac{3}{2};-5\right)\right\}\)

16 tháng 8 2021

a) \(-\dfrac{2}{5}+\dfrac{5}{6}x=-\dfrac{4}{15}\\ \Leftrightarrow\dfrac{5}{6}x=\dfrac{2}{15}\\ \Leftrightarrow x=\dfrac{4}{25}\)

b) \(\dfrac{2}{3}+\dfrac{7}{4}\div x=\dfrac{5}{6}\\ \Leftrightarrow\dfrac{7}{4}\div x=\dfrac{1}{6}\\ \Leftrightarrow x=\dfrac{7}{24}\)

a: Ta có: \(-\dfrac{2}{5}+\dfrac{5}{6}x=\dfrac{-4}{15}\)

\(\Leftrightarrow x\cdot\dfrac{5}{6}=\dfrac{2}{15}\)

hay \(x=\dfrac{4}{25}\)

b: Ta có: \(\dfrac{7}{4}:x+\dfrac{2}{3}=\dfrac{5}{6}\)

\(\Leftrightarrow\dfrac{7}{4}:x=\dfrac{1}{6}\)

hay \(x=\dfrac{21}{2}\)