K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2016

2006 x 2007 - 1997 = 4026042 - 1997

                             = 4024045

2006 x 2005 + 2015 = 4022030 + 2015

                              =  4024045

13 tháng 4 2016

đầu tiên ta xét tử số : 2006*2007-1997=4026042-1997 = 4024045                                                                                                                 ta xét mẫu số : 2006*2005+2015 = 4024045                                                                                                                                                                    Vì cả tử và mẫu số đều = nhau nên dãy số đó đó = 1

\(\dfrac{x-2014}{4}+\dfrac{x-2015}{3}=\dfrac{x-13}{2005}+\dfrac{x-14}{2004}\)

<=>\(\left(\dfrac{x-2014}{4}-1\right)+\left(\dfrac{x-2015}{3}-1\right)=\left(\dfrac{x-13}{2005}-1\right)+\left(\dfrac{x-14}{2004}-1\right)\)

<=>\(\dfrac{x-2018}{4}+\dfrac{x-2018}{3}=\dfrac{x-2018}{2005}+\dfrac{x-2018}{2004}\)

<=>\(\left(x-2018\right).\left[\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{2005}-\dfrac{1}{2004}\right]=0\)

<=>  \(x-2018=0\)

=>x=2018

Vậy S= {2018}

Chúc bạn học tốt!
#Yuii

29 tháng 4 2021

hahathank

3 tháng 12 2017

a/ \(2006.|x-1|+1.\left(x-1\right)^2=2005.|1-x|.\)

\(\Rightarrow2006.|x-1|+\left(x-1\right)^2-2005.|1-x|=0\)

Vì \(\hept{\begin{cases}|x-1|\ge0\\|1-x|\ge0\end{cases}}\)

mà \(|x-1|=x-1\)

\(|1-x|=x-1\)\(\Rightarrow|x-1|=|1-x|\)

Thay vào ta được:

\(2006.\left(x-1\right)+\left(x-1\right)^2-2005.\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right).\left(2006-2005\right)+\left(x-1\right)^2=0\)

\(\Rightarrow\left(x-1\right)+\left(x-1\right)^2=0\)

Vì \(\left(x-1\right)^2\ge0\)với mọi x

nên \(\Rightarrow\hept{\begin{cases}x-1=0\\\left(x-1\right)^2\end{cases}\Rightarrow\hept{\begin{cases}x=1\\x=1\end{cases}}}\)(t/m)

Vậy x = 1

3 tháng 12 2017

b/ Vì \(\left(x-2014\right)^{2014}\ge0\)với mọi x

\(\left(y-2015\right)^{2014}\ge0\)với mọi y

Để \(\left(x-2014\right)^{2014}+\left(y-2015\right)^{2014}=0\)

\(\Rightarrow\hept{\begin{cases}\left(x-2014\right)^{2014}=0\\\left(y-2015\right)^{2014}=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x-2014=0\\y-2015=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=2014\\y=2015\end{cases}}\)

Vậy : .......

Nhớ k nhé! Thank you!!!

5 tháng 4 2020

a, Làm

\(\frac{x+1}{2020}+\frac{x+2}{2019}+\frac{x+3}{2018}=\frac{x+4}{2017}+\frac{x+5}{2016}+\frac{x+6}{2015}\)

<=>\(\frac{x+2021}{2020}+\frac{x+2021}{2019}+\frac{x+2021}{2018}=\frac{x+2021}{2017}+\frac{x+2021}{2016}+\frac{x+2021}{2015}\)

<=>\(\left(x+2021\right)\left(\frac{1}{2020}+\frac{1}{2019}+\frac{1}{2018}-\frac{1}{2017}-\frac{1}{2016}-\frac{1}{2015}\right)=0\)

<=> x+2021=0

<=> x=-2021

Kl:......................

b, Làmmmmm

\(\frac{2-x}{2004}-1=\frac{1-x}{2005}-\frac{x}{2006}\)

<=> \(\frac{2006-x}{2004}=\frac{2006-x}{2005}+\frac{2006-x}{2006}\)

<=> \(\left(2006-x\right)\left(\frac{1}{2004}-\frac{1}{2005}-\frac{1}{2006}\right)=0< =>2006-x=0\)

<=> x=2006

Kl:..............

10 tháng 8 2015

Thấy số chính phương là các số có dạng 3k hoặc 3k+1

A=1015+1=1000.....000000000001

Tổng các chữ số của A là 1+0+0+...+0+1=2

2 có dạng 3k+2

=> A có dạng 3k+2 nên A ko phải số chính phương

B chia hết cho B thì chắc chia hết cho 3

C thì            

10 tháng 8 2015

2) x2 + y= 3z=> x+ y chia hết cho 3 

Vì x; y2 là  số chính phương nên x; ychia cho 3 dư 0 hoặc 1

Nếu x2 hoặc y hoặc x2 và  y chia cho 3 dư 1 => x2 + y chia cho 3 dư 1 hoặc 2 ( trái với đề bai)

=> x2 ; y2 đều chia hết cho 3. 3 là số nguyên tố  => x; y đều chia hết cho 3 

=> x2; ychia hết cho 9 => 3z2 chia hết cho 9 => zchia hết cho 3 ; 3 là số nguyên tố => z chia hết cho 3

Vậy...

14 tháng 1 2015

(x-2015)^x+1 - (x-2015)^x+2015

=>x-2015= 0;1;-1

x-2015=0 =>x=2015

x-2015=1 =>x=2016

x-2015=-1 =>x=2014