K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi I, J lần lượt là trung điểm AP, BP
tam giác AMP vuông có trung tuyến MI =>MI=AP2 (1)
tam giác ABP có DJ là đường trung bình =>DJ=AP2 (2)
từ (1, 2)=> MI =DJ (3)
chứng minh tương tự ta có DI =LJ (4)
mặt khác DIPJ là hình bình hành =>DIP^=DJP^ (5)
và có PIM^=2.PAM^ và PJL^=2.PBL^ mà PAM^=PBL^ suy ra PIM^=PJL^ (6)
cộng (5), (6) vế theo vấ ta được DIM^=LJD^ (7)
từ (3, 4, 7)=>△DIM=△LJD
suy ra DM =LD (đpcm)

14 tháng 8 2019

À đúng rồi đấy chứ không sao đâu tại bấm vào nút link mà lộn qua nút sai 

21 tháng 7 2023

Giải thích các bước giải:

a, ΔBAD có BA = BD

⇒ ΔBAD cân ở B

⇒ ���^=���^ (đpcm)

b, Ta có:

ΔAHD vuông ở H ⇒ ���^+���^=90�

ΔABC vuông ở A ⇒ ���^=���^=90�

m���^=���^

⇒ ���^=���^

⇒ AD là tia phân giác của ���^ (đpcm)

c, Xét 2 tam giác vuông ΔHAD và ΔKAD có:

AH chung; ���^=���^

⇒ ΔHAD = ΔKAD (cạnh huyền - góc nhọn)

⇒ AH = AK (đpcm)

d, AB + AC = BD + AK + KC = BD + AH + KC < BD + AH + DC = BC + AH

Vậy AB + AC < BC + AH

21 tháng 7 2023

Giải thích các bước giải:

a, ΔBAD có BA = BD

⇒ ΔBAD cân ở B

⇒ ���^=���^ (đpcm)

b, Ta có:

ΔAHD vuông ở H ⇒ ���^+���^=90�

ΔABC vuông ở A ⇒ ���^=���^=90�

m���^=���^

⇒ ���^=���^

⇒ AD là tia phân giác của ���^ (đpcm)

c, Xét 2 tam giác vuông ΔHAD và ΔKAD có:

AH chung; ���^=���^

⇒ ΔHAD = ΔKAD (cạnh huyền - góc nhọn)

⇒ AH = AK (đpcm)

d, AB + AC = BD + AK + KC = BD + AH + KC < BD + AH + DC = BC + AH

Vậy AB + AC < BC + AH

18 tháng 12 2021

a: Xét ΔMAB và ΔMDC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔMAB=ΔMDC