trong tam giác ABc lấy P sao cho \(\widehat{PAC}\) =\(\widehat{PBC}\). Từ P kẻ đường thẳng vuông góc với BC . PK vuông góc với CA.Gọi D là trung điểm của AB . Chứng minh DK=DM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi I, J lần lượt là trung điểm AP, BP
tam giác AMP vuông có trung tuyến MI => (1)
tam giác ABP có DJ là đường trung bình => (2)
từ (1, 2)=> MI =DJ (3)
chứng minh tương tự ta có DI =LJ (4)
mặt khác DIPJ là hình bình hành => (5)
và có và mà suy ra (6)
cộng (5), (6) vế theo vấ ta được (7)
từ (3, 4, 7)=>
suy ra DM =LD (đpcm)
À đúng rồi đấy chứ không sao đâu tại bấm vào nút link mà lộn qua nút sai
Giải thích các bước giải:
a, ΔBAD có BA = BD
⇒ ΔBAD cân ở B
⇒ (đpcm)
b, Ta có:
ΔAHD vuông ở H ⇒
ΔABC vuông ở A ⇒
mà
⇒
⇒ AD là tia phân giác của (đpcm)
c, Xét 2 tam giác vuông ΔHAD và ΔKAD có:
AH chung;
⇒ ΔHAD = ΔKAD (cạnh huyền - góc nhọn)
⇒ AH = AK (đpcm)
d, AB + AC = BD + AK + KC = BD + AH + KC < BD + AH + DC = BC + AH
Vậy AB + AC < BC + AH
Giải thích các bước giải:
a, ΔBAD có BA = BD
⇒ ΔBAD cân ở B
⇒ (đpcm)
b, Ta có:
ΔAHD vuông ở H ⇒
ΔABC vuông ở A ⇒
mà
⇒
⇒ AD là tia phân giác của (đpcm)
c, Xét 2 tam giác vuông ΔHAD và ΔKAD có:
AH chung;
⇒ ΔHAD = ΔKAD (cạnh huyền - góc nhọn)
⇒ AH = AK (đpcm)
d, AB + AC = BD + AK + KC = BD + AH + KC < BD + AH + DC = BC + AH
Vậy AB + AC < BC + AH
a: Xét ΔMAB và ΔMDC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔMAB=ΔMDC