Tính nhanh: N = \(\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
Có: \(N=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+....+\frac{1}{120}\)
\(=>N=\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+...+\frac{2}{240}\)
\(=>N=\frac{2}{4\cdot5}+\frac{2}{5\cdot6}+\frac{2}{6\cdot7}+...+\frac{2}{15\cdot16}\)
\(=>N=\left(\frac{2}{4}-\frac{2}{5}+\frac{2}{5}-\frac{2}{6}+...+\frac{2}{15}-\frac{2}{16}\right)\)
\(=>N=\frac{2}{4}-\frac{2}{16}\)
\(=>N=\frac{1}{2}-\frac{1}{8}\)
\(=>N=\frac{8-2}{16}=\frac{6}{16}=\frac{3}{8}\)
Vậy \(N=\frac{3}{8}\)
Ta có :
\(N=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\)
\(N=2\left(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{240}\right)\)
\(N=2\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{15.16}\right)\)
\(N=2\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{15}-\frac{1}{16}\right)\)
\(N=2\left(\frac{1}{4}-\frac{1}{16}\right)\)
\(N=\frac{1}{2}-\frac{1}{8}\)
\(N=\frac{3}{8}\)
Vậy \(N=\frac{3}{8}\)
Chúc bạn học tốt ~