Tính nhanh: N = \(\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\)
\(=\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+...+\frac{2}{240}\)
\(=\frac{2}{4.5}+\frac{2}{5.6}+\frac{2}{6.7}+...+\frac{2}{15.16}\)
\(=2.\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{15.16}\right)\)
\(=2.\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{15}-\frac{1}{16}\right)\)
\(=2.\left(\frac{1}{4}-\frac{1}{16}\right)\)
\(=2.\left(\frac{4}{16}-\frac{1}{16}\right)\)
\(=2.\frac{3}{16}=\frac{3}{8}\)
B = \(\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+....+\frac{1}{120}\)
\(B=\frac{1}{4.5:2}+\frac{1}{5.6:2}+\frac{1}{6.7:2}+.....+\frac{1}{15.16:2}\)
\(\frac{1}{2}B=\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+....+\frac{1}{15.16}\)
Ta thấy: \(\frac{1}{4.5}=\frac{1}{4}-\frac{1}{5};\frac{1}{5.6}=\frac{1}{5}-\frac{1}{6};\frac{1}{6.7}=\frac{1}{6}-\frac{1}{7};.....\)
\(\frac{1}{2}B=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-.....-\frac{1}{15}+\frac{1}{15}-\frac{1}{16}\)
\(\frac{1}{2}B=\frac{1}{4}-\frac{1}{16}=\frac{3}{16}\)
\(B=\frac{3}{16}:\frac{1}{2}=\frac{3}{16}.2=\frac{3}{8}\)
\(E=\frac{1}{10}+\frac{1}{15}+...+\frac{1}{120}\)
\(E=\frac{2}{20}+\frac{2}{30}+...+\frac{2}{240}\)
\(E=2\left(\frac{1}{20}+\frac{1}{30}+...+\frac{1}{240}\right)\)
\(E=2\left(\frac{1}{4x5}+\frac{1}{5x6}+...+\frac{1}{15x16}\right)\)
\(E=2\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{15}-\frac{1}{16}\right)\)
\(E=2\left(\frac{1}{4}-\frac{1}{16}\right)\)
\(E=\frac{3}{8}\)
1/2E=1/20+1/30+1/42+...+1/240. =>1/2E=1/4*5+1/5*6+1/6*7+...+1/15*16. =>1/2E=1/4-1/5+1/5-1/6+1/6-1/7+...+1/15-1/16. =>1/2E=1/4-1/16=3/16. =>E=3/16:1/2=3/8. Câu b có vấn đề.
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{5.6}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{5}-\frac{1}{6}\)
\(A=1-\frac{1}{6}\)
\(A=\frac{6}{6}-\frac{1}{6}\)
\(A=\frac{5}{6}\)
\(B=\frac{1}{10}+\frac{1}{15}+...+\frac{1}{120}\)
\(B=2.\left(\frac{1}{20}+\frac{1}{30}+...+\frac{1}{240}\right)\)
\(B=2.\left(\frac{1}{4.5}+\frac{1}{5.6}+..+\frac{1}{15.16}\right)\)
\(B=2.\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{15}-\frac{1}{16}\right)\)
\(B=2.\left(\frac{1}{4}-\frac{1}{16}\right)\)
\(B=2.\left(\frac{4}{16}-\frac{1}{16}\right)\)
\(B=2.\frac{3}{16}\)
\(B=\frac{3}{8}\)
Chúc bạn học tốt !!!
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{5.6}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{5}-\frac{1}{6}\)
\(A=\frac{1}{1}-\frac{1}{6}\)
\(A=\frac{5}{6}\)
\(B=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\)
\(B=\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+...+\frac{2}{240}\)
\(B=\frac{2}{4.5}+\frac{2}{5.6}+\frac{2}{6.7}+...+\frac{2}{15.16}\)
\(B=2\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{15.16}\right)\)
\(B=2.\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{15}-\frac{1}{16}\right)\)
\(B=2.\left(\frac{1}{4}-\frac{1}{16}\right)\)
\(B=2.\frac{3}{16}\)
\(B=\frac{6}{16}=\frac{3}{13}\)
A = 1/10 + 1/15 + 1/21 + ... + 1/120
A = 2/20 + 2/30 + 2/42 + ... + 2/240
A = 2 × (1/4×5 + 1/5×6 + 1/6×7 + ... + 1/15×16)
A = 2 × (1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + ... + 1/15 - 1/16)
A = 2 × (1/4 - 1/16)
A = 2 × (4/16 - 1/16)
A = 2 × 3/16
A = 3/8
Có: \(N=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+....+\frac{1}{120}\)
\(=>N=\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+...+\frac{2}{240}\)
\(=>N=\frac{2}{4\cdot5}+\frac{2}{5\cdot6}+\frac{2}{6\cdot7}+...+\frac{2}{15\cdot16}\)
\(=>N=\left(\frac{2}{4}-\frac{2}{5}+\frac{2}{5}-\frac{2}{6}+...+\frac{2}{15}-\frac{2}{16}\right)\)
\(=>N=\frac{2}{4}-\frac{2}{16}\)
\(=>N=\frac{1}{2}-\frac{1}{8}\)
\(=>N=\frac{8-2}{16}=\frac{6}{16}=\frac{3}{8}\)
Vậy \(N=\frac{3}{8}\)
Ta có :
\(N=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\)
\(N=2\left(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{240}\right)\)
\(N=2\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{15.16}\right)\)
\(N=2\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{15}-\frac{1}{16}\right)\)
\(N=2\left(\frac{1}{4}-\frac{1}{16}\right)\)
\(N=\frac{1}{2}-\frac{1}{8}\)
\(N=\frac{3}{8}\)
Vậy \(N=\frac{3}{8}\)
Chúc bạn học tốt ~