Tìm số tự nhiên có 2 chữ số, chữ số hàng chục là 6 biết số đó cộng với số gồm 2 chữ số ấy viết theo thứ tự ngược lại là bình phương của 1 số tự nhiên.
Giúp mình cần gấp!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề : Tìm số tự nhiên có 3 chữ số biết rằng bình phương của chữ số hàng chục bằng tích của 2 chữ số kia và số tự nhiên đó trừ đi số gồm 3 chữ số ấy viết theo thứ tự ngược lại bằng 495 .
Giải:
Gọi số cần tìm là abc ( a ≠0)
Ta có:
abc - cba = 495
=> (100a + 10b + c) - (100c + 10b + a) = 495
100a + 10b + c - 100c - 10b - a = 495
99a - 99c = 495
99 x (a - c) = 495
a - c = 495 : 99
a - c = 5
⇒⇒ (a;c) ∈{(5;0) ; (6;1) ; (7;2) ; (8;3) ; (9;4)}
Lại có: b2 = a x c
Như vậy ta tìm được 2 cặp giá trị (a;c) thỏa mãn là: (5;0) ; (9;4)
⇒ b∈{0; 6}
Vậy số cần tìm là 500 và 964.
Gọi số cần tìm là \(\overline{9a}\left(0\le a\le9\right)\) số tự nhiên trong đề bài là \(x\). Theo đề bài, ta có:
\(\overline{9a}-\overline{a9}=x^3\)
\(\left(90+a\right)-\left(a.10-9\right)=x^3\)
\(90+a-a.10+9=x^3\)
\(\left(90+9\right)+\left(a-a.10\right)=x^3\)
\(99-9a=x^3\)
\(9.\left(11-a\right)=x^3\)
\(27.\left(11-a\right)=3.x^3\)
\(3^3.\left(11-a\right)=3.x^3\)
\(\left(11-a\right)=3.x^3\div3^3\)
\(\left(11-a\right)=3.\left(x\div3\right)^3\)
\(\left(11-a\right)\div3=\left(x\div3\right)^3\)
\(\Rightarrow\left(11-a\right)\in B\left(3\right)\)và \(0\le a\le9\)nên \(2\le\left(11-a\right)\le11\)Nên \(\left(11-a\right)\in\left\{3;6;9\right\}\)Ta lập bảng:
\(11-a\) | 3 | 6 | 9 |
\(\left(x\div3\right)^3\) | 1 | 2 | 3 |
\(\left(x\div3\right)\) | 1 | Không thỏa mãn | Không thỏa mãn |
\(\Rightarrow x\div3=1\Rightarrow x=3\)và \(11-a=3\Rightarrow a=8\)
Vậy số cần tìm là 98.
) Gọi số cần tìm là abc
Do số tự nhiên đó trừ đi số gồm ba chữ số viết theo thứ tự ngược lại bằng 495 nên:
100a + 10b + c - 100c - 10b - a = 495 (c khác 0)
=> 99(a - c) = 495
=> a - c = 5
=> a = 9, c = 4 => a*c = 36 (nhận) (bình phương chữ số hàng chục bằng tích hai số kia)
a = 8, c = 3 => a*c = 24 (loại)
a = 7, c = 2 => a*c = 14 (loại)
a = 6, c = 1 => a*c = 6 (loại)
b^2 = 36 => b = 6
Vậy số cần tìm là 964
Gọi số cần tìm là abc.
Theo bài ra ta có : \(b^2=a.c\)
abc-cba=495
\(\Rightarrow a.100+b.100+c+c.100-b.10-a=495\)
\(\Rightarrow\left(a.100-a\right)+\left(b.10-b.10\right)-\left(c.100-c\right)=495\)
\(\Rightarrow99.a-99c=495\)
\(\Rightarrow99.\left(a-c\right)=495\)
\(\Rightarrow\left(a-c\right)=495:99\)
\(\Rightarrow a-c=5\)
\(\Rightarrow c=a-5\)
Vì a < 10 \(\Rightarrow a-5< 5\Rightarrow0< c< 5\)
\(\Rightarrow c=\left\{1;2;3;4\right\}\)
Ta xét \(c=1\Rightarrow a=1+5=6\)
\(\Rightarrow b^2=1.6=6\)(vô lí )
Xét \(c=2\Rightarrow a=2+5=7\)
\(\Rightarrow b^2=2.7=14\)(vô lí )
Xét \(c=3\Rightarrow a=3+5=8\)
\(\Rightarrow b^2=3.8=24\)(vô lí )
Xét \(c=4\Rightarrow a=4+5=9\)
\(\Rightarrow b^2=4.9=36=6^2\)(thỏa mãn )
\(\Rightarrow b=6\Rightarrow abc=964\)
Vậy số cần tìm là : 964
Chúc bạn học tốt !!!
Gọi số cần tìm là abc (a khác 0; a,b,c là các chữ số)
Ta có:
abc - cba = 495
=> (100a + 10b + c) - (100c + 10b + a) = 495
=> 100a + 10b + c - 100c - 10b - a = 495
=> 99a - 99c = 495
=> 99.(a - c) = 495
=> a - c = 495 : 99
=> a - c = 5
Ta tìm được các cặp giá trị (a;c) là: (5;0) ; (6;1) ; (7;2) ; (8;3) ; (9;4)
Lại có: b2 = a.c
Như vậy ta tìm dược 2 cặp giá trị (a;c) thỏa mãn là: (5;0) ; (9;4)
Giá trị b tương ứng là: 0; 6
Vậy số cần tìm là 500 và 964
Đây là cách làm
Ta có: \(\overline{6b}+\overline{b6}=60+b+10b+6=66+11b=k^2\)
Suy ra: \(=11\left(b+6\right)=k^2\)(b thuộc N)
Suy ra: \(b+6=11\Rightarrow b=5\)
Vậy số cần tìm là 65