M có phải là số chính phương không, biết:
M = 1 + 3 + 5 + ... + ( 2n - 1 ) (Với\(\forall n\inℕ,n\ne0\))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh: Số có dạng \(n^6-n^4+2n^3+2n^2\) với \(n\inℕ\) và \(n>1\) không phải là số chính phương.
\(=n^2\left(n^4-n^2+2n+2\right)=\)
\(=n^2\left[n^2\left(n^2-1\right)+2\left(n+1\right)\right]=\)
\(=n^2\left[n^2\left(n-1\right)\left(n+1\right)+2\left(n+1\right)\right]=\)
\(=n^2\left[\left(n+1\right)\left(n^3-n^2+2\right)\right]=\)
\(=n^2\left\{\left(n+1\right)\left[\left(n^3+1\right)-\left(n^2-1\right)\right]\right\}=\)
\(=n^2\left\{\left(n+1\right)\left[\left(n^3+1\right)-\left(n-1\right)\left(n+1\right)\right]\right\}=\)
\(=n^2\left\{\left(n+1\right)\left[\left(n+1\right)\left(n^2-n+1\right)-\left(n-1\right)\left(n+1\right)\right]\right\}=\)
\(=n^2\left(n+1\right)^2\left(n^2-n+1\right)-n^2\left(n+1\right)^2\left(n-1\right)=\)
\(=n^2\left(n+1\right)^2\left[\left(n^2-n+1\right)-\left(n-1\right)\right]=\)
\(=n^2\left(n+1\right)^2\left(n^2-2n+2\right)\) Giả sử đây là số chính phương
\(\Rightarrow n^2-2n+2\) Phải là số chính phương
Ta có
\(n^2-2n+2=\left(n-1\right)^2+1\Rightarrow n^2-2n+2>\left(n-1\right)^2\) (1)
Ta có
\(n^2-2n+2=n^2-2\left(n-1\right)\) Với n>1
\(\Rightarrow n^2-2n+2< n^2\) (2)
Từ (1) và (2)
\(\Rightarrow\left(n-1\right)^2< n^2-2n+2< n^2\)
Mà \(\left(n-1\right)^2\) và \(n^2\) là hai số chính phương liên tiếp nên \(n^2-2n+2\) không phải là số chính phương
=> Biểu thức đề bài đã cho không phải là số chính phương
M=1+3+5+...+(2n-1)
=[(2n-1)+1]×n/2
=2n^2/2=n^2
=> M là số chính phương.
Trong tổng trên có số số hạng là :
( 2n - 1 - 1 ) : 2 + 1 = n ( số hạng )
=> M = ( 2n - 1 + 1 ) . n/2 = 2n.n/2 = n^2
=> M = số chính phương
Hok tốt ^^
1/ Xét \(\left(n^{1010}\right)^2=n^{2020}< n^{2020}+1=\left(n^{1010}+1\right)^2-2n^{1010}< \left(n^{1010}+1\right)^2\)
Vì \(n^{2020}+1\)nằm ở giữa 2 số chính phương liên tiếp là \(\left(n^{1010}\right)^2\)và \(\left(n^{1010}+1\right)^2\)nên không thể là số chính phương.
2/ Mình xin sửa đề là 1 tí đó là tìm \(n\inℤ\)để A là số chính phương nha bạn, vì A hoàn toàn có thể là số chính phương
\(A>n^4+2n^3+n^2=\left(n^2+n\right)^2,\forall n\inℤ\)
\(A< n^4+n^2+9+2n^3+6n^2+6n=\left(n^2+n+3\right)^2,\forall n\inℤ\)
Vì A bị kẹp giữa 2 số chính phương là \(\left(n^2+n\right)^2,\left(n^2+n+3\right)^2\)nên A là số chính phương khi và chỉ khi:
+) \(A=\left(n^2+n+1\right)^2\Rightarrow n^4+2n^3+2n^2+n+7=n^4+n^2+1+2n^3+2n^2+2n\)
\(\Leftrightarrow n^2+n-6=0\Leftrightarrow\orbr{\begin{cases}n=2\\n=-3\end{cases}}\)
+) \(A=\left(n^2+n+2\right)^2\Rightarrow n^4+2n^3+2n^2+n+7=n^4+n^2+4+2n^3+4n^2+4n\)
\(\Leftrightarrow3n^2+3n-3=0\Leftrightarrow x=\frac{-1\pm\sqrt{5}}{2}\notinℤ\)---> Với n=-3;2 thì A là số chính phương.
3/ Bằng phản chứng giả sử \(n^3+1\)là số chính phương:
---> Đặt: \(n^3+1=k^2,k\inℕ^∗\Rightarrow n^3=k^2-1=\left(k-1\right)\left(k+1\right)\)
Vì n lẻ nên (k-1) và (k+1) cùng lẻ ---> 2 số lẻ liên tiếp luôn nguyên tố cùng nhau
Lúc này (k-1) và (k+1) phải là lập phương của 2 số tự nhiên khác nhau
---> Đặt: \(\hept{\begin{cases}k-1=a^3\\k+1=b^3\end{cases},a,b\inℕ^∗}\)
Vì \(k+1>k-1\Rightarrow b^3>a^3\Rightarrow b>a\)---> Đặt \(b=a+c,c\ge1\)
Có \(b^3-a^3=\left(k+1\right)-\left(k-1\right)\Leftrightarrow\left(a+c\right)^3-a^3=2\Leftrightarrow3ca^2+3ac^2+c^3=2\)
-----> Quá vô lí vì \(a,c\ge1\Rightarrow3ca^2+3ac^2+c^3\ge7\)
Vậy mâu thuẫn giả thiết ---> \(n^3+1\)không thể là số chính phương với n lẻ.
M=1+3+5....+(2n-1)
Số số hạng (2n-1-1)/2+1=n số hạng
Suy ra M=\(\frac{\left(1+2n-1\right).n}{2}=\frac{2.n^2}{2}=n^2\) vậy M là số chính phương
toán lớp mấy