Tìm x,y thuộc n thoả mãn
x^2(x+4y) + y^2(y+4x) = 36
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+y^2+4=2xy+4x+4y\)
\(\Leftrightarrow x^2-\left(2y+4\right)x+y^2-4y+4=0\)
Xét phương trình theo nghiệm x.
\(\Rightarrow\Delta'=\left(y+2\right)^2-\left(y^2-4y+4\right)=8y\)
\(\Rightarrow\orbr{\begin{cases}x=y+2-2\sqrt{2y}\\x=y+2+2\sqrt{2y}\end{cases}}\)
Vì x, y nguyên dương nên
\(\Rightarrow\sqrt{2y}=a\)
\(\Rightarrow y=2n^2\)
\(\Rightarrow\orbr{\begin{cases}x=2n^2+2-4n\\x=2n^2+2+4n\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\left(n-1\right)^2\\x=2\left(n+1\right)^2\end{cases}}\)
Vậy \(\frac{y}{2};\frac{x}{2}\)là 2 số chính phương.
Ta có: \(4x=3y\) hay \(\dfrac{x}{3}=\dfrac{y}{4}\Rightarrow\dfrac{x}{9}=\dfrac{y}{12}\left(1\right)\)
\(4y=3z\) hay \(\dfrac{y}{3}=\dfrac{z}{4}\Rightarrow\dfrac{y}{12}=\dfrac{z}{16}\left(2\right)\)
Từ (1) và (2), suy ra:
\(\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{16}\) \(\Rightarrow\dfrac{2x}{18}=\dfrac{y}{12}=\dfrac{z}{16}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{2x}{18}=\dfrac{y}{12}=\dfrac{z}{16}=\dfrac{2x+y-z}{18+12-16}=\dfrac{-14}{14}=-1\)
Do đó:
\(\dfrac{x}{9}=-1\Rightarrow x=9.\left(-1\right)=-9\)
\(\dfrac{y}{12}=-1\Rightarrow y=12.\left(-1\right)=-12\)
\(\dfrac{z}{16}=-1\Rightarrow z=16.\left(-1\right)=-16\)
Vậy x = -9 ; y = -12 ; z = -16
\(4\left(xy+yz+xz\right)+x+y+z=9\)
Mặt khác ta có \(\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\Rightarrow xy+yz+xz\le\dfrac{1}{3}\left(x+y+z\right)^2\)
\(\Rightarrow\dfrac{4}{3}\left(x+y+z\right)^2+\left(x+y+z\right)\ge9\)
\(\Leftrightarrow\left[2\left(x+y+z\right)+\dfrac{3}{4}\right]^2\ge\dfrac{441}{16}\)
\(\Leftrightarrow\left[{}\begin{matrix}2\left(x+y+z\right)+\dfrac{3}{4}\ge\dfrac{21}{4}\\2\left(x+y+z\right)+\dfrac{3}{4}\le\dfrac{-21}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y+z\ge\dfrac{9}{4}\\x+y+z\le-3\end{matrix}\right.\) \(\Rightarrow\left(x+y+z\right)^2\ge\dfrac{81}{16}\)
Mà \(P=x^2+y^2+z^2\ge\dfrac{\left(x+y+z\right)^2}{3}\ge\dfrac{81}{16.3}=\dfrac{27}{16}\)
\(\Rightarrow P_{min}=\dfrac{27}{16}\) khi \(x=y=z=\dfrac{3}{4}\)
Ta có: x2+2xy+4x+4y+3y2+3=0
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(4x+4y\right)+2y^2+3=0\)
\(\Leftrightarrow[\left(x+y\right)^2+4\left(x+y\right)+4]+2y^2=1\)
\(\Leftrightarrow\left(x+y+2\right)^2=1-2y^2\)
Do \(y^2\ge0\Rightarrow1-2y^2\le1\)
\(\Rightarrow B^2=\left(x+y+2\right)^2\le1\)
\(\Rightarrow\left\{{}\begin{matrix}B\le1\\B\ge-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}B_{max}=1\\B_{min}=-1\end{matrix}\right.\)
\(x^2+2xy+4x+4x+3y^2+3=0\\ \Leftrightarrow\left(x+y\right)^2+2.\left(x+y\right).2+4=1-2y^2\\ \Leftrightarrow\left(x+y+2\right)^2=1-2y^2\le1\\ \Rightarrow\left(x+y+2\right)^2\le1\)
\(\Rightarrow-1\le x+y+2\le1\\ \)
\(\Leftrightarrow\left(x^2-6x+9\right)+\left(y^2-4y+4\right)=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(y-2\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-3\right)^2=0\\\left(y-2\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)
\(P=\frac{1}{4x^2+2}+\frac{1}{4y^2+2}+\frac{1}{6xy}+\frac{1}{6xy}+\frac{5}{3xy}\)
\(P\ge\frac{16}{4x^2+4y^2+12xy+4}+\frac{5}{3xy}=\frac{16}{4\left(x+y\right)^2+4xy+4}+\frac{5}{3xy}\)
\(P\ge\frac{16}{4\left(x+y\right)^2+\left(x+y\right)^2+4}+\frac{5}{3.\frac{1}{4}\left(x+y\right)^2}=\frac{7}{3}\)
\(P_{min}=\frac{7}{3}\) khi \(x=y=1\)
pt <=> x^3+4x^2y+y^3+4xy^2 = 36
<=> (x^3+y^3)+(4x^2y+4xy^2) = 36
<=> (x+y).(x^2-xy+y^2)+4xy.(x+y) = 36
<=> (x+y).(x^2-xy+y^2+4xy) = 36
<=> (x+y).(x^2+3xy+y^2) = 36
Đến đó bạn dùng ước bội mà giải từng cái nha
Tk mk