Cho a>2, b>2. Chứng minh rằng ab>a+b.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét VT = 1/ab + 1/(a² + b²) = 1/2ab + 1/(a² + b²) + 1/2ab
Áp dụng bđt: 1/x + 1/y ≥ 4/(x + y) với x, y >0 và với a + b = 1 ta có:
1/2ab + 1/(a² + b²) ≥ 4/(2ab + a² + b²) = 4/(a + b)² = 4
Áp dụng bđt 4xy ≤ (x + y)² ta có:
1/2ab = 2/4ab ≥ 2/(a + b)² = 2
=> VT ≥ 4 + 2 = 6
Dấu "=" xảy ra khi a = b và a + b = 1 nên a = b = ½
Vì a > 2 , b > 2 nên a ; b có dạng :
a = 2 + m ( m \(\in\)N )
b = 2 + n ( n \(\in\)N )
Khi đó a + b = 4 + ( m + n ) ( 1 )
a . b = ( 2 + m ) . ( 2 + n )
= 2 . ( 2 + n ) + m . ( 2 + n )
= 2 . 2 + 2 . n + m . 2 + m . n
= 4 + 2n + 2m + mn
= 4 + n + n + m + m + mn
= 4 + ( m + n ) + ( m + n + mn ) ( 2 )
Từ ( 1 ) và ( 2 ) => a + b < ab Vì 4 + ( m + n ) < 4 + ( m + n ) + ( m + n + mn ) và m + n + mn > 0
=> đpcm
\(\frac{a^3}{b}\ge a^2+ab-b^2\)
\(\Rightarrow\)\(a^3\ge a^2b+ab^2-b^3\)
\(\Leftrightarrow\)\(a^3-a^2b-ab^2+b^3\ge0\)
\(\Leftrightarrow\)\(\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)\ge0\)
\(\Leftrightarrow\)\(\left(a+b\right)\left(a^2-ab+b^2-ab\right)\ge0\)
\(\Leftrightarrow\)\(\left(a+b\right)\left(a-b\right)^2\ge0\) (luôn đúng do a,b > 0; (a-b)2 >= 0 )
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b\)
3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương.
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết
Vậy nên phải có ít nhất 1 số dương
Không mất tính tổng quát, giả sử a > 0
mà abc > 0 => bc > 0
Nếu b < 0, c < 0:
=> b + c < 0
Từ gt: a + b + c < 0
=> b + c > - a
=> (b + c)^2 < -a(b + c) (vì b + c < 0)
<=> b^2 + 2bc + c^2 < -ab - ac
<=> ab + bc + ca < -b^2 - bc - c^2
<=> ab + bc + ca < - (b^2 + bc + c^2)
ta có:
b^2 + c^2 >= 0
mà bc > 0 => b^2 + bc + c^2 > 0
=> - (b^2 + bc + c^2) < 0
=> ab + bc + ca < 0 (vô lý)
trái gt: ab + bc + ca > 0
Vậy b > 0 và c >0
=> cả 3 số a, b, c > 0
1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)
\(\left(b+c\right)^2\ge4b>0\)
\(\left(a+c\right)^2\ge4c>0\)
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)
Mà abc=1
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)
Ta có a3 + b3 - ab(a + b) \(\ge0\)
\(\Leftrightarrow\)(a + b)(a2 - ab + b2 - ab)\(\ge0\)
\(\Leftrightarrow\)(a + b)(a - b)2 \(\ge0\)(đúng)
Vậy cái ban đầu là đúng
Ta có : \(\hept{\begin{cases}a>2\\b>0\end{cases}}\) (gt)
\(\Rightarrow ab>2b\) (1)
và \(\hept{\begin{cases}b>2\\a>0\end{cases}}\)(gt)
\(\Rightarrow ab>2a\) (2)
Từ (1) và (2) . cộng vế với vế
\(\hept{\begin{cases}ab>2b\\ab>2a\end{cases}}\)
\(\Rightarrow2ab>2\left(a+b\right)\)
Từ (1) và (2) chia 2 vế cho 2
\(\Rightarrow ab>a+b\) (đpcm)
Ta có a> 2 và b>2 nên a(b-2)>0 và b(a-2) >0.
Vậy a(b-2)+b(a-2) >0 <=> 2[ab -a -b] >0 <=> ab > a+ b
Xét : 2ab-2.(a+b)
= 2ab-2a-2b
= (ab-2a)+(ab-2b)
= a.(b-2)+b.(a-2)
Vì a>2 ; b>2 => a-2 > 0 ; b-2 > 0
=> a.(b-2)+b.(a-2) > 0
<=> 2ab > 2.(a+b)
<=> ab > a+b
Tk mk nha