Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì a>2, b>2 => \(2-a<0;b-2>0\Rightarrow\left(2-a\right)\left(b-2\right)<0\Leftrightarrow2b-4-ab+2a<0\)
\(\Leftrightarrow2\left(a+b\right)>ab+4\)<=> \(a+b<\frac{ab}{2}+2\).
ta có: a>2; b>2 => ab>4 <=> ab/2 >2 <=> ab/2 +2>4 => ab/2 +2 <ab
=> a+b<ab
Bài 2:
Ta chứng minh \(\left|a+b\right|\le\left|a\right|+\left|b\right|\) (*) :
Bình phương 2 vế của (*) ta có:
\(\left(\left|a+b\right|\right)^2\le\left(\left|a\right|+\left|b\right|\right)^2\)
\(\Leftrightarrow a^2+b^2+2ab\le a^2+b^2+2\left|ab\right|\)
\(\Leftrightarrow ab\le\left|ab\right|\) (luôn đúng)
Áp dụng (*) vào bài toán ta có:
\(\left|a-c\right|\le\left|a-b+b-c\right|=\left|a-c\right|\) (luôn đúng)
Ta biến đổi tương đương:
a/b + b/a >= 2
<=> (a^2+b^2)/ab >=2
<=> a^2+b^2>=2ab
<=> a^2-2ab+b^2>=0
<=> (a-b)^2 >= 0 (*)
Biểu thức (*) đúng
tích
Vì a > 2 , b > 2 nên a ; b có dạng :
a = 2 + m ( m \(\in\)N )
b = 2 + n ( n \(\in\)N )
Khi đó a + b = 4 + ( m + n ) ( 1 )
a . b = ( 2 + m ) . ( 2 + n )
= 2 . ( 2 + n ) + m . ( 2 + n )
= 2 . 2 + 2 . n + m . 2 + m . n
= 4 + 2n + 2m + mn
= 4 + n + n + m + m + mn
= 4 + ( m + n ) + ( m + n + mn ) ( 2 )
Từ ( 1 ) và ( 2 ) => a + b < ab Vì 4 + ( m + n ) < 4 + ( m + n ) + ( m + n + mn ) và m + n + mn > 0
=> đpcm