K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2014

gọi x,y,z lần lượt là số đo của 3 góc

=>x+y+z=180 độ

theo đề ta có: x/5 = y/6 = z/7 = x+y+z/5+6+7 = 180/18 = 10

=> x/5 = 10 => x = 50

y/6 =10 => y =60

z/7 =10 => z =70

Vậy 3 góc của tam giác lần lượt là 50 độ;60độ;70độ

2 tháng 6 2018

Gọi a, b, c (độ) lần lượt là số đo 3 góc A, B, C. (0 < a; b; c < 180º).

Theo định lí tổng ba góc của tam giác ta có:

    a + b + c = 180.

Vì số đo 3 góc tỉ lệ với 3; 5; 7 nên ta có:

Bài 15 trang 67 sách bài tập Toán 7 Tập 1 | Giải SBT Toán 7

Vậy số đo ba góc của tam giác ABC là: 36o; 60o; 84o

24 tháng 11 2021

\(\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{5}=\dfrac{\widehat{C}}{7}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{3+5+7}=\dfrac{180^0}{15}=12^0\\ \Rightarrow\left\{{}\begin{matrix}\widehat{A}=36^0\\\widehat{B}=60^0\\\widehat{C}=84^0\end{matrix}\right.\)

24 tháng 3 2020

đề sai bạn ơi, các góc tỉ lệ chứ cạnh cđg

theo đề bài ta có : 

A/3 = B/4 = C/5

=> A+B+C/3+4+5 = A/3=B/4=C/5

A+B+C = 180

=> 180/12 = A/3 = B/4 = C/5

=> 15 = A/3 = B/4 = C/5

=> A = 45 ; B = 60; C = 75

24 tháng 3 2020

Gọi 3k, 4k, 5k lần lượt là các cạnh của tam giác ABC \(\left(k>0;k\inℝ\right)\)
Áp dụng định lí pythagore đảo vào tam giác ABC:
Vì \(\left(5k\right)^2=25k^2=9k^2+16k^2=\left(3k\right)^2+\left(4k\right)^2\)
Suy ra: tam giác ABC là tam giác vuông có độ dài cạnh huyền là 5k, độ dài 2 cạnh góc vuông là 3k, 4k
Với tam giác ABC vuông tại A, thì: \(\widehat{A}=90^0\)
Giả sử: AB = 3k ; AC = 4k
\(\sin B=\frac{AC}{BC}=\frac{4k}{5k}=\frac{4}{5}\Rightarrow\widehat{B}\approx53^0\)
Vì tổng các góc \(\widehat{A}=90^0\)
\(\Rightarrow\widehat{B}+\widehat{C}=90^0\)
\(\Rightarrow\widehat{C}=90^0-\widehat{B}=90^0-53^0=37^0\)
Vậy 3 góc trong tam giác có số đo là: \(90^0;37^0;53^0\)
HỌC TỐT!

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{4}=\dfrac{b}{5}=\dfrac{c}{3}=\dfrac{a+b+c}{4+5+3}=\dfrac{180}{12}=15\)

Do đó: a=60; b=75; c=45

3 tháng 12 2021

Gọi số đo ba góc lần lượt là \(a,b,c\left(a,b,c>0\right)\)

Áp dụng tc dtsbn:

\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{180}{12}=15\)

\(\Rightarrow\left\{{}\begin{matrix}a=45^0\\b=60^0\\c=75^0\end{matrix}\right.\)

21 tháng 7 2021

Bạn tham khảo ở đây: https://olm.vn/hoi-dap/detail/1284076363999.html

11 tháng 11 2021

ΔABCΔABC có ˆA+ˆB+ˆC=180oA^+B^+C^=180o

Theo để bài  ˆA3=ˆB4=ˆC5A^3=B^4=C^5

Áp dụng tính chất của dãy tỉ số bằng nhau ta có: 

ˆA3=ˆB4=ˆC5=ˆA+ˆB+ˆC3+4+5=180o12=15oA^3=B^4=C^5=A^+B^+C^3+4+5=180o12=15o

hay: ˆA3=15o⇒ˆA=15o.3=45oA^3=15o⇒A^=15o.3=45o

       ˆB4=15o⇒ˆB=15o.4=60oB^4=15o⇒B^=15o.4=60o

       ˆC5=15o⇒ˆC=15o.5=75o

21 tháng 7 2021

Gọi số đo 3 góc của \(\Delta ABC\)lần lượt là a; b; c (a; b; c \(\inℤ\)/ a+b+c=1800 )

Vì a; b; c lần lượt tỉ lệ với 3; 4; 5 nên:

\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)

Áp dụng t/c DTSBN, ta có:

\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)\(=\frac{a+b+c}{3+4+5}\)\(=\frac{180}{12}=15\)

=> a=15.3=45

b=15.4=60

c= 15.5=75

Đ/s: ...

10 tháng 5 2017

Theo đề bài ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)\(\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{5}=\dfrac{\widehat{C}}{7}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{5}=\dfrac{\widehat{C}}{7}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{3+5+7}=\dfrac{180^o}{15}=12^o\)

\(\Rightarrow\widehat{A}=12^o.3=36^o\)

\(\widehat{B}=12^o.5=60^o\)

\(\widehat{C}=12^o.7=84^o\)

16 tháng 7 2017

nếu số đo (độ) các góc của tam giác ABC là A , B , C (độ) thì theo điều kiện bài ra và tính chất của dãy tỉ số bằng nhau , ta có \(\dfrac{A}{3}=\dfrac{B}{5}=\dfrac{C}{7}=\dfrac{A+B+C}{3+5+7}=\dfrac{180}{15}=12\)

vậy : A = 3 . 12 = 36

B = 5 . 12 = 60

C = 7 . 12 = 84

=> A = 36 (độ) ; B = 60 (độ) ; C = 84 (độ)