Rút gọn : B=1+4+4^2+4^3+..........+4^100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`A=1+4+4^2+4^3+....+4^99+4^100`
`=>4A=4+4^2+4^3+4^4+...+4^100+4^101`
`=>4A-A=4^101-1`
`=>3A=4^101-1`
`=>A=(4^101-1)/3`
Ta có: \(A=1+4+4^2+...+4^{99}+4^{100}\)
\(\Leftrightarrow4\cdot A=4+4^2+4^3+...+4^{100}+4^{101}\)
\(\Leftrightarrow4\cdot A-A=4^{101}-1\)
hay \(A=\dfrac{4^{101}-1}{3}\)
4B = 4+4^2+4^3+....+4^101
3B=4B-B=(4+4^2+4^3+....+4^101)-(1+4+4^2+....+4^100) = 4^101 - 1
=> B = (4^101-1)/3
k mk nha
a: \(\dfrac{4^5\cdot9^4-2\cdot6^9}{2^{10}\cdot3^8+6^8\cdot20}\)
\(=\dfrac{2^{10}\cdot3^8-2\cdot2^9\cdot3^9}{2^{10}\cdot3^8+2^8\cdot3^8\cdot2^2\cdot5}\)
\(=\dfrac{2^{10}\cdot3^8-2^{10}\cdot3^9}{2^{10}\cdot3^8+2^{10}\cdot3^8\cdot5}\)
\(=\dfrac{2^{10}\cdot3^8\left(1-3\right)}{2^{10}\cdot3^8\left(1+5\right)}=\dfrac{-2}{6}=-\dfrac{1}{3}\)
Bài 1:
a: \(2A=2^{101}+2^{100}+...+2^2+2\)
\(\Leftrightarrow A=2^{100}-1\)
b: \(3B=3^{101}+3^{100}+...+3^2+3\)
\(\Leftrightarrow2B=3^{100}-1\)
hay \(B=\dfrac{3^{100}-1}{2}\)
c: \(4C=4^{101}+4^{100}+...+4^2+4\)
\(\Leftrightarrow3C=4^{101}-1\)
hay \(C=\dfrac{4^{101}-1}{3}\)
a/ta gọi biểu thức trên là A.
ta có: A=1+2+22+...+2100
2A= 2x(1+2+22+...+2100)
2A= 2x1+2x2+22x2+...+2100x2
2A= 2+22+23+....+2101
2A-A=A=(2+22+23+....+2101)-(1+2+22+...+2100)
A= 2101-1
b/ làm tương tụ như câu a nhưng cuối cùng phải thêm '':2'' (vì lúc đó ta tính ra 3A - A =2A nên phải chia 2)
-Quy luật: Nhân mỗi vế của đẳng thức cho số thích hợp để tạo ra đẳng thức mới, khi cộng (hoặc trừ) mỗi vế của mỗi đẳng thức thì sẽ rút gọn bớt.
a) \(A=2-2^2+2^3-2^4+...+2^{99}-2^{100}\)
\(\Rightarrow2A=2^2-2^3+2^4-2^5+...+2^{100}-2^{101}\)
\(\Rightarrow2A+A=2^2-2^3+2^4-2^5+...+2^{100}-2^{101}+\left(2-2^2+2^3-2^4+...+2^{99}-2^{100}\right)\)
\(\Rightarrow A=-2^{101}+2\)
b,c) làm tương tự.
d) \(D=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\)
\(\Rightarrow3D=3+1+\dfrac{1}{3}+...+\dfrac{1}{3^{99}}\)
\(\Rightarrow3D-D=3+1+\dfrac{1}{3}+...+\dfrac{1}{3^{99}}-\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow2D=3+\dfrac{1}{3^{100}}\)
\(\Rightarrow2D=\dfrac{3^{101}+1}{3^{100}}\Rightarrow D=\dfrac{3^{101}+1}{2.3^{100}}\)
e) làm tương tự nhưng đổi thành cộng.