Chứng minh rằng với n không chia hết cho 3 thì 3^(2n)+3^n+1 chia hết cho 13
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
DB
0
KN
25 tháng 3 2019
Câu hỏi của Minh Nguyệt - Toán lớp 8 - Học toán với OnlineMath
Bạn tham khảo.
19 tháng 8 2019
BN thử vào câu hỏi tương tự xem có k?
Nếu có thì bn xem nhé!
Nếu k thì xin lỗi đã làm phiền bn
Hội con 🐄 chúc bạn học tốt!!!
TD
2
ND
Nguyễn Đức Trí
VIP
12 tháng 7 2023
\(n\left(2n-3\right)-2n\left(n+1\right)=2n^2-3n-2n^2-2n=-5n\)
mà \(-5n⋮5\left(n\in Z\right)\)
⇒đpcm
NN
Nguyễn Ngọc Anh Minh
CTVHS
VIP
12 tháng 7 2023
\(n\left(2n-3\right)-2n\left(n+1\right)=\)
\(=2n^2-3n-2n^2-2n=-5n⋮5\)
Đây
Ta có: \(3^{2n}+3^n+1\)
Vì n không chia hết cho 3 nên: n có dạng là \(3k+1\)
Thế vào: Ta có: \(3^{6k+2}+3^{3k+1}+1\)
\(=729^k\cdot9+27^k\cdot3+1\)
Mặt khác: \(729\equiv27\equiv1\)(mod 13)
Do đó: \(729^k\cdot9+27^k\cdot3+1\equiv1\cdot9+1\cdot3+1=13\)(mod 13)
Vậy .............
P/s: Xét luôn trường hợp \(n=3k+2\)với cách làm tương tự trên