K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2018

a, \(\left|x+5\right|-9=0\)

\(\Rightarrow\left|x+5\right|=0+9\)

\(\Rightarrow\left|x+5\right|=9\)

\(\Rightarrow\orbr{\begin{cases}x+5=9\\x+5=-9\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=4\\x=-14\end{cases}}\)

b, \(\left|x+10\right|\ge0\)

\(\Rightarrow\left|x+10\right|+29\ge0+29\)

\(\Rightarrow\left|x+10\right|+29\ge29\)

\(\Rightarrow A\ge29\)

Để A đạt được giá trị nhỏ nhất là 29 thì |x+10| + 29 = 29

\(\Rightarrow\left|x+10\right|=29-29=0\)

\(\Rightarrow\left|x+10\right|=0\)

\(\Rightarrow x+10=0\)

\(\Rightarrow x=0-10=-10\)

Vậy \(A_{min}=29\Leftrightarrow x=-29\)

25 tháng 2 2018

a . / x + 5 / - 9 = 0

=>  / x + 5 /    = 0 + 9 

=>  / x + 5 /    =  9

=>    x + 5 = 9 hoặc x + 5 = -9

=> x = 4 hoặc x = -14 

8 tháng 12 2020

cho hàm số f(x) thỏa mãn 2f(x) - x. f(-x) = x+10. tính f(2)

2 tháng 9 2021

a) \(x-10\sqrt{x}\left(đk:x\ge0\right)=\left(\sqrt{x}-5\right)^2-25\ge-25\)

\(ĐTXR\Leftrightarrow x=25\)

b) \(x-\sqrt{x}\left(đk:x\ge0\right)=\left(\sqrt{x}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)

\(ĐTXR\Leftrightarrow x=\dfrac{1}{4}\)

 

20 tháng 1 2019

Để M lớn nhất thì \(\left|x-3\right|\)nhỏ nhất

Mà \(\left|x-3\right|\ge0\)

Dấu bằng xảy ra khi và chỉ khi:x=3

Vậy \(M_{MAX}=9\)tại \(x=3\)

câu a x là vô hạn nha

5 tháng 2 2021

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

5 tháng 2 2021

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được

20 tháng 1 2019

a, Ta có: \(\left|x-3\right|\ge0\)

=>\(-5+\left|x-3\right|\ge-5+0\)

=>\(M\ge-5\)

 Dấu"=" xảy ra <=>x-3=0=> x=3

Vậy Min M= -7 <=> x=3

b,Ta có :\(-\left|x-3\right|\le0\)

=>\(9-\left|x-3\right|\le9-0\)

=>\(M\le9\)

Dấu "=" xảy ra <=>x-3=0 =>x=3

Vậy Max M= 9 <=>x=3

12 tháng 5 2020

A=|x-9|+10

Ta có |x-9| >= 0 với mọi x

=> |x-9|+10 >= 0+10

hay A >= 10

Dấu "=" xảy ra <=> |x-9|=0

<=> x-9=0

<=> x=9

Vậy Min A=10 đạt được khi x=9

12 tháng 5 2020

A = |x - 9| + 10

Ta có: \(\left|x-9\right|\ge0\)với \(\forall x\)

\(\Rightarrow\left|x-9\right|+10\ge10\)

Dấu "=" xảy ra khi:

|x - 9| = 0

=> x - 9 = 0

=> x = 9

Vậy AMIN = 10 khi x = 9

8 tháng 5 2019

\(A=|x-9|+10\)

Vì \(|x-9|\ge0\)

\(\Rightarrow|x-9|+10\ge10\)

\(\Rightarrow A_{min}=10\)\(\Leftrightarrow|x-9|=0\Rightarrow x-9=0\)

\(\Rightarrow x=9\)

30 tháng 6 2021

\(1.\)

\(-17-\left(x-3\right)^2\)

Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)

\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)

\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)

Dấu '' = '' xảy ra khi: 

\(\left(x-3\right)^2=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

Vậy \(Max=-17\)khi \(x=3\)

30 tháng 6 2021

\(2.\)

\(A=x\left(x+1\right)+\frac{3}{2}\)

\(A=x^2+x+\frac{3}{2}\)

\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)