a.\(|x+5|-9=0\)
b.\(A=29+|x+10| \)đạt giá trị nhỏ nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x-10\sqrt{x}\left(đk:x\ge0\right)=\left(\sqrt{x}-5\right)^2-25\ge-25\)
\(ĐTXR\Leftrightarrow x=25\)
b) \(x-\sqrt{x}\left(đk:x\ge0\right)=\left(\sqrt{x}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)
\(ĐTXR\Leftrightarrow x=\dfrac{1}{4}\)
Để M lớn nhất thì \(\left|x-3\right|\)nhỏ nhất
Mà \(\left|x-3\right|\ge0\)
Dấu bằng xảy ra khi và chỉ khi:x=3
Vậy \(M_{MAX}=9\)tại \(x=3\)
câu a x là vô hạn nha
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được
A=|x-9|+10
Ta có |x-9| >= 0 với mọi x
=> |x-9|+10 >= 0+10
hay A >= 10
Dấu "=" xảy ra <=> |x-9|=0
<=> x-9=0
<=> x=9
Vậy Min A=10 đạt được khi x=9
A = |x - 9| + 10
Ta có: \(\left|x-9\right|\ge0\)với \(\forall x\)
\(\Rightarrow\left|x-9\right|+10\ge10\)
Dấu "=" xảy ra khi:
|x - 9| = 0
=> x - 9 = 0
=> x = 9
Vậy AMIN = 10 khi x = 9
\(A=|x-9|+10\)
Vì \(|x-9|\ge0\)
\(\Rightarrow|x-9|+10\ge10\)
\(\Rightarrow A_{min}=10\)\(\Leftrightarrow|x-9|=0\Rightarrow x-9=0\)
\(\Rightarrow x=9\)
\(1.\)
\(-17-\left(x-3\right)^2\)
Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)
\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)
\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)
Dấu '' = '' xảy ra khi:
\(\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Vậy \(Max=-17\)khi \(x=3\)
\(2.\)
\(A=x\left(x+1\right)+\frac{3}{2}\)
\(A=x^2+x+\frac{3}{2}\)
\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)
a, \(\left|x+5\right|-9=0\)
\(\Rightarrow\left|x+5\right|=0+9\)
\(\Rightarrow\left|x+5\right|=9\)
\(\Rightarrow\orbr{\begin{cases}x+5=9\\x+5=-9\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=4\\x=-14\end{cases}}\)
b, \(\left|x+10\right|\ge0\)
\(\Rightarrow\left|x+10\right|+29\ge0+29\)
\(\Rightarrow\left|x+10\right|+29\ge29\)
\(\Rightarrow A\ge29\)
Để A đạt được giá trị nhỏ nhất là 29 thì |x+10| + 29 = 29
\(\Rightarrow\left|x+10\right|=29-29=0\)
\(\Rightarrow\left|x+10\right|=0\)
\(\Rightarrow x+10=0\)
\(\Rightarrow x=0-10=-10\)
Vậy \(A_{min}=29\Leftrightarrow x=-29\)
a . / x + 5 / - 9 = 0
=> / x + 5 / = 0 + 9
=> / x + 5 / = 9
=> x + 5 = 9 hoặc x + 5 = -9
=> x = 4 hoặc x = -14