Ai có bài trình bày chi tiết giúp e với ạ: toán 8 hình: cho tam giác ABC, điểm O trong tam giác. lấy D trên OA, qua D kẻ đường // với AB, cắt OB ở E. Qua E kẻ đường // với BC cắt OC ở F. chứng minh DF//AC
E cảm ơn nhiều:(((
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo Thales có
DE//AB\(\Rightarrow\frac{OD}{OA}=\frac{OE}{OB}\left(1\right)\)
Lại có EF//BC\(\Rightarrow\frac{OE}{OB}=\frac{OF}{OC}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{OD}{OA}=\frac{OF}{OC}\Rightarrow\) DF//AC(thales)
DE//AB
=>OD/OA=OE/OB=DE/AB=1/3
EF//BC
=>EF/BC=OF/OC=OE/OB=1/3=OD/OA
OF/OC=OD/OA
=>DF//AC
=>DF/AC=OD/OA=1/3
Xet ΔDEF và ΔABC có
DE/AB=EF/BC=DF/AC
=>ΔDEF đồng dạng với ΔABC
=>k=ED/AB=1/3
Bài 6 :
Tự vẽ hình nhá :)
a) Gọi O là giao điểm của AC và EF
Xét tam giác ADC có :
EO // DC => AE/AD = AO/AC (1)
Xét tam giác ABC có :
OF // DC
=> CF/CB = CO/CA (2)
Từ (1) và (2) => AE/AD + CF/CB = AO/AC + CO/CA = AO + CO/AC = AC/AC = 1 => đpcm
Bài 7 :
a) Do EF // AB => CF / CA = EF / AB => CF / EF = AC / AB (1)
Dựng MG // AC và M là trung điểm của cạnh BC => GM là đường trung bình của tam giác ABC => G là trung điểm của cạnh AB =>AG = BG
Do DK // GM => AD / AG = DK / GM => AD / BG = DK / GM
=> DK / AD = GM / BG = \(\frac{\frac{AC}{2}}{\frac{AB}{2}}=\frac{AC}{AB} \left(2\right)\)
Từ (1) và (2) => CF / EF = DK / AD
Mà tứ giác ADEF là hình bình hành ( vì EF // AD và DE // AF ) nên AD = È
=> CF = DK ( đpcm )
Bài 8 :
Ta có : AB = AM + MB = 11 + 8 = 19 ( cm )
Áp dụng hệ quả định lí Ta-lét vào tam giác ABC, ta có :
AM / AB = AN / AC => AM + AB / AB = AN + AC / AC => 19 + 11 / 19 = AN + 38 / 38 => 30/19 = 38 + AN / 38
=> 1140 = 19.AN + 722
=> AN = ( 1140 - 722 ) / 19 = 22 ( cm )
=> NC = 38 - 12 = 26 ( cm )
bạn ơi, cái chỗ qua E kẻ đường thẳng song song với OC tại F là sao vậy bạn.