K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2018

A B C D E

16 tháng 1 2018

a, Góc AEC chắn cung AC

Và góc ACB chắn cung AB

Mà: Cung AB = Cung AC

\(\Rightarrow\) Góc AEC = Góc ACB

b, Xét 2 tam giác AEC và tam giác ACD, ta có:

Góc EAC là góc chung

Góc AEC = Góc ACB (Cmt)

\(\Rightarrow\) Tam giác AEC đồng dạng Tam giác ACD (g.g)

28 tháng 4 2019

a, vì CE//AD nên \(\widehat{ECA}\)=\(\widehat{DAB}\)mà \(\widehat{DAB}\)=90 độ -45 độ=45 độ

=> \(\widehat{ECA}\)=45 độ

trong tam giác EAC có: \(\widehat{EAC}\)=90 độ; \(\widehat{ECA}\)=45 độ(1)

=> \(\widehat{AEC}\)=45 độ(2)

từ (1) và (2) suy ra tam giác AEC cân tại A

b, tam giác AEC cân tại A mà có góc A vuông nên tam giác AEC vuông cân

=> EC là cạnh huyền của tam giác vuông AEC nên EC là cạnh lớn nhất(cạnh huyền lớn hơn cạnh góc vuông)

=>  A B C D x E

10 tháng 1 2020

@Akai Haruma help me

10 tháng 1 2020

DD'//BC ở F???

2 tháng 1 2018

a)   Xét  \(\Delta ABD\)và   \(\Delta EBD\)có:

         \(AB=EB\)  (gt)

         \(\widehat{ABD}=\widehat{EBD}\)   (gt)

        \(BD\)   cạnh chung

suy ra:   \(\Delta ABD=\Delta EBD\) (c.g.c)

b)  \(\Delta ABD=\Delta EBD\) \(\Rightarrow\)\(AD=ED\)(2 cạnh tương ứng);    \(\widehat{BAD}=\widehat{BED}=90^0\)(2 góc tương ứng)

Xét 2 tam giác vuông:  \(\Delta DAM\)và  \(\Delta DEC\)có:

                      \(DA=DE\) (cmt)

                      \(\widehat{ADM}=\widehat{EDC}\)  (dd)

suy ra:   \(\Delta DAM=\Delta DEC\)    (cạnh góc vuông - góc nhọn kề cạnh ấy)

\(\Rightarrow\)\(AM=EC\)(2 cạnh tương ứng)

c)   \(\Delta DAE\)  cân tại D   (do  DA = DE) 

\(\Rightarrow\)\(\widehat{DAE}=\widehat{DEA}\)

mà  \(\widehat{DAM}=\widehat{DEC}\)   ( \(=90^0\))

suy ra:   \(\widehat{DAE}+\widehat{DAM}=\widehat{DEA}+\widehat{DEC}\)

hay  \(\widehat{MAE}=\widehat{AEC}\)   (đpcm)

2 tháng 1 2018

a) Xét tam giác ABD và EBD có :

BA = BE;

Cạnh BD chung

\(\widehat{ABD}=\widehat{EBD}\)

\(\Rightarrow\Delta ABD=\Delta EBD\left(c-g-c\right)\)

b) Do \(\Delta ABD=\Delta EBD\Rightarrow AD=ED;\widehat{BAD}=\widehat{BED}=90^o\)

nên \(\widehat{DAM}=\widehat{DEC}\)

Vậy thì \(\Delta ABM=\Delta EDC\left(g-c-g\right)\)

\(\Rightarrow AM=EC\)

c) Ta có DA = DE nên \(\widehat{DAE}=\widehat{DEA}\)

Vậy nên \(\widehat{AEC}=\widehat{DEC}+\widehat{AED}=\widehat{DAM}+EAD=\widehat{EAM}\)