1. Cho đoạn thẳng AB và C nằm giữa A và B. Trên cùng một nửa mặt phẳng bờ AB, vẽ 2 tam giác đều ACD va BEC. Gọi M và N lần lượt là trung điểm của AE và BD. Chứng minh : a, AE=BD ; b, tam giác MCN là tam giác đều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Đông Phí Mạnh - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
Câu hỏi của Đông Phí Mạnh - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo bài tương tự tại đây nhé.
Câu hỏi của Đông Phí Mạnh - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo bài tương tự tại đây nhé.
( tự vẽ hình )
a) Vì ACD và BEC là 2 tam giác đều => góc ACD = góc BCE = 60độ
=> ACD + DCE = BCE + DCE ( cùng cộng vs DCE )
hay góc ACE = góc BCD
Xét tam giác ACE và DCB ( c-g-c )
=> AE = BD ( 2 ctứ ) ( đpcm )
( tự vẽ hình )
a) Vì ACD và BEC là 2 tam giác đều => góc ACD = góc BCE = 60độ
=> ACD + DCE = BCE + DCE ( cùng cộng vs DCE )
hay góc ACE = góc BCD
Xét tam giác ACE và DCB ( c-g-c )
=> AE = BD ( 2 ctứ ) ( đpcm )
Câu hỏi của Đông Phí Mạnh - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
a) Vì△ADC đều => ACD = 60o
Ta có: ACD + DCB = 180o
=> DCB = 180o - 60o = 120o
Vì△BEC đều => BCE = 60o
Ta có: BCE + ECA = 180o
=> ECA = 180o - 60o = 120o
Xét△DCB và△ACE có:
EC = CB (△BEC đều)
DCB = ECA (= 120o)
DC = AC (△ACB đều)
=>△DCB =△ACE (c.g.c)
=> BD = AE (2 cạnh tương ứng)
b) Ta có: MA = ME = 1/2AE (M: trung điểm AE)
Lại có: NB = ND = 1/2BD (N: trung điểm BD)
Mà AE = BD => 1/2AE = 1/2BD => MA = ND
Vì△DCB =△ACE
=> MAC = NDC ( 2 góc tương ứng) Xét△MAC và△NDC có:
MA = ND (cmt)
MAC = NDC (cmt)
DC = AC (△ADC đều)
=>△MAC =△NDC (c.g.c)
=> MC = NC (2 cạnh tương ứng)
Vì△MAC =△NDC
=> MCA = NCD (2 góc tương ứng)
=> MCA - MCD = NCD - MCD
=> MCN = 60o
Ta xét△MNC có:
MC = NC
MCN = 60o
=>△MNC đều