Tìm bộ ba số tự nhiên khác không ( a,b,c ) sao cho :
1/a + 1/a+b +1/a+b+c = 1
Nhanh nhé !!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng các số trong phương trình là 1, vì vậy ta có: 3a + 2b + c = 1.
Với số tự nhiên a, b và c, ta có thể thử các giá trị để tìm bộ ba số thỏa mãn phương trình.
Ví dụ, ta có thể thử a = 1, b = 1 và c = -4, thì 3a + 2b + c = 3 + 2 + (-4) = 1, phương trình được thỏa mãn.
Vậy, một bộ ba số tự nhiên khác 0 thỏa mãn phương trình đã cho là a = 1, b = 1 và c = -4.
ĐKXĐ: \(a\ne0;\)\(a+b\ne0;\)\(a+b+c\ne0\)
Vì 3 số a,b,c là 3 số tự nhiên
\(\Rightarrow\)\(\frac{1}{a}\ge a+b;\)\(\frac{1}{a}\ge\frac{1}{a+b+c}\)
\(\Rightarrow\)\(\frac{1}{a}+\frac{1}{a+b}+\frac{1}{a+b+c}\le\frac{1}{a}+\frac{1}{a}+\frac{1}{a}=\frac{3}{a}\)
\(\Rightarrow\)\(0< a\le3\)
Sau đó bn xét từng trường hợp a = 1,2,3 để giải biểu thức trên là xong nhé
ĐKXĐ: \(a\ne0,a+b\ne0,a+b+c\ne0\)
do a,b,c là các số tự nhiên => \(\frac{1}{a}\ge\frac{1}{a+b};\frac{1}{a}\ge\frac{1}{a+b+c}\)
=>\(\frac{1}{a}+\frac{1}{a+b}+\frac{1}{a+b+c}=1\le\frac{1}{a}+\frac{1}{a}+\frac{1}{a}=\frac{3}{a}\)
=>\(0< a\le3\)
Sau đó bạn xét từng trường hợp a=1,2,3 để giải pt nghiệm nguyên tìm b,c là xong nhé
làm tiếp:
Với a, b, c là số tự nhiên
Th1: a = 1 ta có: \(\frac{1}{1}+\frac{1}{1+b}+\frac{1}{1+b+c}=1\)
<=> \(\frac{1}{1+b}+\frac{1}{1+b+c}=0\)loại vì 1 + b; 1 + b + c >0
TH2: a = 2 ta có: \(\frac{1}{2}+\frac{1}{2+b}+\frac{1}{2+b+c}=1\)
<=> \(\frac{1}{2+b}+\frac{1}{2+b+c}=\frac{1}{2}\)
=> \(\frac{1}{2}\le\frac{1}{2+b}+\frac{1}{2+b}=\frac{2}{2+b}\)
=> \(b\le2\)
+) Với b = 0 => \(\frac{1}{2}+\frac{1}{2+c}=\frac{1}{2}\)loại
+) Với b = 1 => \(\frac{1}{3}+\frac{1}{3+c}=\frac{1}{2}\)<=> c = 3 (tm )
+) Với b = 2 => \(\frac{1}{4}+\frac{1}{4+c}=\frac{1}{2}\)<=> c = 0 (tm)
TH3: a = 3 ta có: \(\frac{1}{3}+\frac{1}{3+b}+\frac{1}{3+b+c}=1\)
<=> \(\frac{1}{3+b}+\frac{1}{3+b+c}=\frac{2}{3}\)
=> \(\frac{2}{3}\le\frac{1}{3+b}+\frac{1}{3+b}=\frac{2}{3+b}\)
=> b = 0 => c = 0
Vậy bộ 3 số tự nhiên là: (3; 0; 0) ; ( 2; 1; 3) ; (2; 2; 0)
Giả sử a<b<c
=> 1/a > 1/b > 1/c
=> 1/a + 1/a + 1/a > 4/5 > 1/c + 1/c + 1/c
=> 3.1/a > 4/5 > 3 . 1/c
Đến đây bạn có thể tụ làm đc rùi đó <3
Giải rồi, mà đang chờ duyệt v~
Câu hỏi của FFPUBGAOVCFLOL - Toán lớp 7 - Học toán với OnlineMath