tìm giá trị nhỏ nhất của A=\(\dfrac{27-12x}{^{ }x^2+9}\)
giải hộ vs mn ui
HELLO MN NHÓ LÂU ÙI KO VÔ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\dfrac{4\left(x^2+9\right)-4x^2-12x-9}{x^2+9}=4-\dfrac{\left(2x+3\right)^2}{x^2+9}\le4\)
\(C_{max}=9\) khi \(x=-\dfrac{3}{2}\)
\(C=\dfrac{-x^2-9+x^2-12x+36}{x^2+9}=-1+\dfrac{\left(x-6\right)^2}{x^2+9}\ge-1\)
\(C_{min}=-1\) khi \(x=6\)
Ta có \(4-C=\dfrac{4x^2+12x+9}{x^2+3}=\dfrac{\left(2x+3\right)^2}{x^2+3}\ge0\Rightarrow C\le4\).
Đẳng thức xảy ra khi và chỉ khi \(x=-\dfrac{3}{2}\).
\(C+1=\dfrac{x^2-12x+36}{x^2+9}=\dfrac{\left(x-6\right)^2}{x^2+9}\ge0\Rightarrow C\ge-1\).
Đẳng thức xảy ra khi và chỉ khi x = 6.
\(A=\dfrac{27-12x}{x^2+9}=\dfrac{x^2-12x+36-\left(x^2+9\right)}{x^2+9}=\dfrac{\left(x-6\right)^2}{x^2+9}-1\ge-1\)
\(A_{min}=-1\Leftrightarrow x=6\)
\(A=\dfrac{27-12x}{x^2+9}=\dfrac{4\left(x^2+9\right)-\left(4x^2+12x+9\right)}{x^2+9}=4-\dfrac{\left(2x+3\right)^2}{x^2+9}\le4\)
\(A_{max}=4\Leftrightarrow x=\dfrac{-3}{2}\)
\(A=3x^2-12x+16=3\left(x^2-4x\right)+16\)
\(=3\left(x^2-4x+4-4\right)+16\)
\(=3\left(x^2-4x+4\right)-3.4+16\)
\(=3\left(x-2\right)^2+4\ge4\), với mọi x
Vì \(\left(x-2\right)^2\ge0\) với mọi x
nên \(A=3\left(x-2\right)^2+4\ge3.0+4=4\) với mọi x
dấu "=" xảy ra khi và chỉ khi: \(\left(x-2\right)^2=0\Leftrightarrow x=2\)
Vậy giá tri nhỏ nhất của A là 4 tại x=2
\(a.\)\(A=|x|+|2014-x|\ge|x+2014-x|=2014\)
Dấu '=' xảy ra khi\(x\left(2014-x\right)>0\)
TH1:\(\hept{\begin{cases}x>0\\2014-x>0\end{cases}\Leftrightarrow0< x< 2014\left(n\right)}\)
TH2:\(\hept{\begin{cases}x< 0\\2014-x< 0\end{cases}\left(l\right)}\)
Vậy \(A_{min}=2014\)khi\(0< x< 2014\)
\(b.\)\(|x^2+|x-1||=x^2+2\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+|x-1|=-x^2-2\\x^2+|x-1|=x^2+2\end{cases}\Leftrightarrow\orbr{\begin{cases}|x-1|=-2x^2-2\left(l\right)\\|x-1|=2\left(n\right)\end{cases}}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=-2\\x-1=2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}}\)
V...
A=\(\frac{27-12x}{x^2+9}\)=\(\frac{x^2-12x+36-\left(x^2+9\right)}{x^2+9}\)=\(\frac{\left(x-6\right)^2}{x^2+9}-1\)\(\ge-1\)
dau bằng xảy ra khi \(\left(2x+3\right)^2=0\Leftrightarrow2x+3=0\Leftrightarrow2x=-3\Leftrightarrow x=\frac{-3}{2}\)
còn 1 trường hợp nữa cũng tương tự
Bài 1:
\(A=x^2+6x+9+x^2-10x+25\)
\(=2x^2+4x+34\)
\(=2\left(x^2+2x+17\right)\)
\(=2\left(x+1\right)^2+32>=32\forall x\)
Dấu '=' xảy ra khi x=-1
\(A=\dfrac{27-12x}{x^2+9}=\dfrac{x^2+9+27-12x}{x^2+9}-1=\dfrac{x^2-12x+36}{x^2+9}-1=\dfrac{\left(x-6\right)^2}{x^2+9}-1\ge-1\)
Dấu = xảy ra khi x = 6
Vậy:...
thank nhó