có hay không so nguyen n de cac phan so n+6/3;n+5/3 dong thoi nhan gia tri nguyen
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để n - 5/ n -3 là số nguyên thì n - 5 chia hết cho n -3
mà n - 3 chia hết cho n -3
=> ( n - 5) - ( n- 3) chia hết cho n -3
=> 8 chia hết cho n -3
<=> n - 3 thuộc Ư{ 8 } = { +- 1;+-8;+-2: +- 4}
Nếu ..............
Ta có:
\(A=\frac{n+3}{n-2}=\frac{\left(n-2\right)+5}{n-2}=1+\frac{5}{n-2}\)
Để A nhận gt trong tập hợp số nguyên thì
n-2 thuộc Ư(5)
=>n-2=(-5;-1;1;5)
=>n=....
Bài 1:
a: Để A là phân số thì n+1<>0
hay n<>-1
b: Để A là số nguyên thì \(n+1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{0;-2;4;-6\right\}\)
3.a) tổng các cs của tử là 3 nên chia hết cho 3
b) tổng các cs của rử là 9 nên chia hết cho 9
Ta có:
\(A=\dfrac{3n+2}{n-1}=\dfrac{3\left(n-1\right)+5}{n-1}=\dfrac{3\left(n-1\right)}{n-1}+\dfrac{5}{n-1}\)
Để \(A\in Z\) thì \(5⋮n-1\) hay \(n-1\in U\left(5\right)=\left\{\pm1;\pm5\right\}\)
Lập bảng giá trị:
\(n-1\) | \(1\) | \(-1\) | \(5\) | \(-5\) |
\(n\) | \(2\) | \(0\) | \(6\) | \(-4\) |
Nếu n+6/3 là số nguyên => n+6 chia hết cho 3 => n chia hết cho 3 ( vì 6 chia hết cho 3 )
=> n+5 ko chia hết cho 3 ( vì 5 ko chia hết cho 3 )
=> n+5/3 ko phải là số nguyên
Vậy ko tồn tại số nguyên n để các phân số n+6/3 và n+5/3 đồng thời nhận giá trị nguyên
Tk mk nha