tìm số dư khi chia 22011 cho 31
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử số cần tìm là A đã bớt đi 5.
Khi đó A chia hết cho 29, còn A chia cho 31 dư: 29 - 5 = 24
=> A=31x k+24 (k là số tự nhiên)
Thử chọn: k=0,1,2,3,...ta thấy: khi k=17 thì A=551 chia hết cho 29
Vậy số cần tìm là: A = 551 + 5 = 556
1.Gọi số tự nhiên cần tìm là A
Chia cho số 29 dư 5 nghĩa là: A = 29p + 5 (p thuộc N)
Tương tự: Chia cho số 31 dư 28 nghĩa là: 31q + 28 (q thuộc N)
Nên 29p + 5 = 31q + 28 => 29 (p - q) = 2q + 23
Ta thấy : 2q + 23 là số lẻ => 29 (p - q) cũng là số lẻ => p - q = 1
Theo giả thiết A nhỏ nhất nên => q nhỏ nhất (A = 31q + 28)
=> 2q = 29(p - q) - 23 nhỏ nhất
=> p- q nhỏ nhất
Do đó p - q = 1 => 2q = 29 -23 = 6
=> q = 3
Vậy số cần tìm A là : 31q + 28 = 31 x 3 + 28 = 121
2. Số đó phải lớn hơn 10. Ta có:
129 : x = b =>x.b + 10 = 129 (b là thương) => x = (129 - 10) : b = 129 : b
61 : x = c dư 10 => x.c + 10 = 61 (c là thương) => x = 51 : c
x = 119 : b = 51 : c
119 chỉ chia hết cho 7 và 17 (ngoài 1 và 119) : 119 : 17 = 7
51 chỉ chia hết cho 3 và 17 (ngoài 1 và 51) : 51 : 3 = 17
Mà số đó lớn hơn 10 nên x = 17
Vậy x = 17
c1
Nếu chia hết cho 29 thì chia cho 31 dư 28-5=23.
Hiệu của 31 và 29: 31 - 29 = 2
Thương của phép chia cho 31 là:
(29-23) : 2 = 3
(Hoặc. Gọi a là thương lúc này của phép chia cho 31.
2 x a + 23 = 29 => a = 3)
Số cần tìm là:
31 x 3 + 28 = 121
Đáp số: 121
c2
Bài giải:
Gọi số tự nhiên cần tìm là A
Chia cho 29 dư 5 nghĩa là: A = 29p + 5 ( p ∈ N )
Tương tự: A = 31q + 28 ( q ∈ N )
Nên: 29p + 5 = 31q + 28=> 29(p - q) = 2q + 23
Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ ==>p – q >=1
Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)
=>2q = 29(p – q) – 23 nhỏ nhất
=> p – q nhỏ nhất
Do đó p – q = 1 => 2q = 29 – 23 = 6
=> q = 3
Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 121
tk nha mk trả lời đầu tiên đó!!!
Gọi số tự nhiên cần tìm là A Chia cho 29 dư 5 nghĩa là:
A = 29p + 5 ( p ∈ N )
Tương tự: A = 31q + 28 ( q ∈ N )
Nên: 29p + 5 = 31q + 28 => 29(p - q) = 2q + 23
Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ =>p – q >=1
Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)
=>2q = 29(p – q) – 23 nhỏ nhất
=> p – q nhỏ nhất Do đó p – q = 1
=> 2q = 29 – 23 = 6 => q = 3
Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 121
Gọi số tự nhiên cần tìm là A
Chia cho 29 dư 5 nghĩa là: A = 29p + 5 ( p ∈ N )
Tương tự: A = 31q + 28 ( q ∈ N )
Nên: 29p + 5 = 31q + 28=> 29(p - q) = 2q + 23
Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ ==>p – q >=1
Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)
=>2q = 29(p – q) – 23 nhỏ nhất
=> p – q nhỏ nhất
Do đó p – q = 1 => 2q = 29 – 23 = 6
=> q = 3
Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 121
Chú ý : dấu (.) là nhân nhé