Cho tam giác ABC có \(\widehat{B}\)=70độ; góc C=40 độ. Vẽ tia Cx là tia đối của tia CB. Vẽ Cy là tia phân giác \(\widehat{ACx}\)
a) Tính \(\widehat{ACx};\widehat{xCy}\)
b) CMR: \(AB\) song song Cy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\widehat{B}+\widehat{C}=140^0\)
\(\Leftrightarrow4\cdot\widehat{C}=140^0\)
\(\Leftrightarrow\widehat{C}=35^0\)
hay \(\widehat{B}=105^0\)
Vậy: ΔABC tù
a) Vì \(\widehat A = 105^\circ > 90^\circ \) nên là góc tù. Do đóc góc A là góc lớn nhất trong tam giác ABC
Cạnh BC đối diện với góc A nên là cạnh lớn nhất trong tam giác ABC
Vậy cạnh lớn nhất của tam giác ABC là cạnh BC.
b) Vì tam giác có góc A là góc tù
\( \Rightarrow \)Tam giác ABC là tam giác tù
a) Do \(\widehat{A}=100^0>90^0\) nên là góc tù, do đó, \(\widehat{A}\) là góc lớn nhất trong tam giác ABC.
\( \Rightarrow \) BC là cạnh lớn nhất của tam giác ABC (do BC đối diện với góc A trong tam giác ABC)
b)
Theo định lí tổng 3 góc trong tam giác ABC, ta có:
\( \Rightarrow \widehat A + \widehat B + \widehat C = {180^o}\)
\( \Rightarrow \widehat C = {180^o} - {100^o} - {40^o} = {40^o}\)
\( \Rightarrow\widehat C = \widehat B = {40^o}\)
\( \Rightarrow \) ABC là tam giác cân tại A.