Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì BI là tia phân giác của \(\widehat{ABC}\)
nên \(\widehat{IBC}=\dfrac{\widehat{ABC}}{2}\)
Vì CI là tia phân giác của \(\widehat{ACB}\)
nên \(\widehat{ICB}=\dfrac{\widehat{ACB}}{2}\)
Xét ΔABC có
\(\widehat{A}+\widehat{ABC}+\widehat{ACB}=180^0\)(Định lí tổng ba góc trong một tam giác)
\(\Leftrightarrow\widehat{ABC}+\widehat{ACB}=180^0-\widehat{A}\)
\(\Leftrightarrow\widehat{ABC}+\widehat{ACB}=180^0-80^0=100^0\)
Ta có: \(\widehat{IBC}+\widehat{ICB}=\dfrac{\widehat{ABC}}{2}+\dfrac{\widehat{ACB}}{2}\)
\(\Leftrightarrow\widehat{IBC}+\widehat{ICB}=\dfrac{\widehat{ABC}+\widehat{ACB}}{2}=\dfrac{100^0}{2}\)
hay \(\widehat{IBC}+\widehat{ICB}=50^0\)
Xét ΔBIC có
\(\widehat{BIC}+\widehat{IBC}+\widehat{ICB}=180^0\)(Định lí tổng ba góc trong một tam giác)
\(\Leftrightarrow\widehat{BIC}+50^0=180^0\)
\(\Leftrightarrow\widehat{BIC}=180^0-50^0\)
hay \(\widehat{BIC}=130^0\)
Vậy: \(\widehat{BIC}=130^0\)
Hình bạn tự vẽ nha
Giải
Xét tam giác ABC có:
góc ABC + góc ACB + góc BAC = 180 độ (đ/l tổng ba góc của 1 tam giác)
mà góc BAC=72 độ
=>góc ACB + góc ABC = 108 độ
Vì I là giao điểm của ba đường phân giác trong của tam giác ABC
=>BI là tia phân giác của góc ABC ; CI là tia phân giác của góc ACB
Có BI là tia phân giác của góc ABC
=>góc IBC=1/2 góc ABC
Có CI là tia phân giác của góc ACB
=> góc ICB =1/2 góc ACB
Có góc IBC + góc ICB=1/2 góc ABC + 1/2 góc ACB =1/2 (góc ABC+góc ACB) = 1/2 . 108 độ = 54 độ
Xét tam giác IBC có:
..... (bạn tự xét nha)
=>góc BIC=126 độ
a,
ta có
A + B+ C = \(180^0\)
B + C = \(180^0\)- A
mà BI là phân giác góc B
IBC = \(\frac{1}{2}\)B
CI là phân giác góc C
ICB = \(\frac{1}{2}\)C
suy ra
IBC + ICB = \(\frac{1}{2}\)B + \(\frac{1}{2}\)C = \(\frac{1}{2}\)( B + C ) = \(\frac{1}{2}\)( \(180^0\)- A ) = \(\frac{1}{2}\) \(\left(180^0-60^0\right)\)= \(60^0\)
mà IBC + ICB + BIC = \(180^0\)
suy ra BIC = \(180^0\)- ( IBC + ICB )
BIC = \(180^0\)- \(60^0\)
BIC = \(120^0\)
b,
ta có vì I là giao điểm của phân giác góc B và C
suy ra phân giác góc A đi qua I suy ra tia AI trùng tia IF suy ra AF là phần giác góc A mà I cách đều AB ; AC ; BC
nên IE = ID = IF
c,
ta có EIB + BIC =\(180^0\)
EIB = \(180^0-120^0\)
EIB = \(60^0\)
Mà EIB đối đỉnh góc DIC
suy ra DIC = EIB = \(60^0\)
vì IF là tia phân giác góc BIC
nên BIF = CIF = \(\frac{1}{2}\)\(120^0\)= \(60^0\)
EIF = BIE + BIF = \(60^0+60^0=120^0\)
DIF = DIC + CIF = \(60^0+60^0=120^0\)
xét tam giác EIF và DIF có
EIF = DIF = \(120^0\)
IF là cạnh chung
IE = ID
suy ra tam giác EIF = tam giác DIF ( c-g-c )
suy ra EF = DF
ta có góc BIC đối đỉnh góc EID
nên BIC = EID = \(120^0\)
xét tam giác EIF và EID có
EID = EIF =\(120^0\)
ID = IF
IE cạnh chung
suy ra tam giác DIE = tam giác FIE ( c-g-c )
suy ra ED = EF
mà EF = DF
suy ra ED = EF = DF
suy ra tam giác EDF là tam giác đều
d,
ta có IE = IF = ID
nên I cách đều 3 đỉnh tam giác DFE nên I là giao điểm của 3 đường trung trực tam giác DEF
mà trong tam giác đều 3 đường trung trực đồng thời là 3 đường phân giác của tam giác đó
suy ra I là giao điểm của hai đường phân giác trong tam giác ABC vá DEF