K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Đặt góc A=a; góc B=b; góc C=c; góc D=d

Theo đề, ta có: a/1=b/2=c/3=d/4 và a+b+c+d=360

Áp dụng tính chất của DTSBN, ta được:

a/1=b/2=c/3=d/4=(a+b+c+d)/(1+2+3+4)=360/10=36

=>a=36; b=72; c=108; d=144

2:

góc C+góc D=360-130-105=230-105=125

góc C-góc D=25 độ

=>góc C=(125+25)/2=75 độ và góc D=75-25=50 độ

3:

góc B=360-57-110-75=118 độ

số đo góc ngoài tại B là:

180-118=62 độ

Kẻ .BN vuông AD, BM vuông CD 
Xét tam giác vuông BNA và BMD có 
+ AB = BC 
+ BNA = 1800 - BAD = 700 nên BAN = BCD = 700
=> tam giác BMD= tam giác BND(cạnh huyền - góc nhọn) 
Suy ra : BN = BM => BD là phân giác góc D 
Nối B vs D, do AB = AD nên tam giác ABD cân tại A khi đó ADB = (1800 - 1100) :2 = 350 
=>ADC = 700
Do ADC + BAD = 1800 => AB song song CD 
VÀ BCD = ADC =700
=> tứ giác ABCD là hình thang cân (đpcm)

chúc bạn học giỏi!! ^^

ok mk nhé!! 3564774734563476576855957234234342342323435345345456465465475676578658563463434

12 tháng 7 2018

Trên cạnh AD bạn lấy điểm E sao cho AE = AB => hai tam giác ACE và ACB bằng nhau (c.g.c) 
=> CE = CB (1) 
và góc AEC = ABC = 110 độ. 
xét tam giác CED có D = 70 đô. 
theo tính chất góc ngoài AEC = tổng hai góc trong không kề nó. Bạn dễ dàng tính được ECD = 40 độ. 
Từ đó có được góc CED = 70 độ 
Suy ra tam giác CED cân tại C , tức là CE = CD (2) 

Từ (1) và (2) ta có đpcm 

trên đấy là giải theo lớp 8, còn giải theo lớp 9 thì chỉ cần nói giả thiết cho ta tứ giác có tổng hai góc đối = 180 độ nên nội tiếp được trong đường tròn và do AC là phân giác nên ta có cung BC có số đo bằng cung CD => CB = CD. 

12 tháng 7 2018

B A E D C

Trên tia AD lấy điểm E sao cho AE = AB

Dễ dàng chứng minh t/g AEC = t/g ABC (c.g.c)

=> góc AEC = góc B = 110 độ và CB = CE (1)

Lại có: góc AEC + góc CED = 180 độ (kề bù)

=>. góc CED = 180 độ - góc AEC = 180 độ - 110 độ = 70 đôj

=> góc CED = góc D = 70 độ

=> t/g CED cân tại C

=> CE = CD (2)

Từ (1) và (2) =>  CB = CD

góc B+góc D=180 độ

=>ABCD là tứ giác nội tiếp

=>góc CBD=góc CAD và góc CDB=góc CAB

mà góc CAD=góc CAB

nên góc CBD=góc CDB

=>CB=CD

Số đo góc ngoài tại đỉnh B là:

\(180^0-360^0+57^0+110^0+75^0=62^0\)

3 tháng 6 2015

tổng 4 góc của tứ giác = 3600

vậy ta có:

góc A + góc B + góc C + góc D = 3600

  800   +  700   +  1100  + góc D = 3600

=> góc D = 360 - ( 800   +  700   +  1100 ) = 1000

vậy góc D = 1000

19 tháng 6 2017

Trong các số tự nhiên phạm vi từ 10 000 đến 100 000 có bao nhiêu số thỏa mãn điều kiện: các chữ số của nó theo thứ tự từ trái sang phải là dãy tăng..

Các ví dụ:

- Số 12348 thỏa mãn điều kiện trên vì 1 < 2 < 3 < 4 < 8;

- Số 22345 không thoả mãn vì chữ số thứ nhất (2) và chữ số thứ hai (2) bằng nhau

- Số 12354 không thỏa mãn vì dãy các chữ số 1 ; 2 ; 3 ; 5 ; 4 không phải là dãy tăng. (5 > 4)

8 tháng 8 2016

Tứ giác ABCD có:

\(A+B+C+D=360^0\)

\(120^0+110^0+80^0+D=360^0\)

\(D=360^0-120^0-110^0-80^0\)

\(D=50^0\)

Góc ngoài ở đỉnh D + D = 1800 

Góc ngoài ở đỉnh D + 500 = 1800

Góc ngoài ở đỉnh D = 1800 - 500

Góc ngoài ở đỉnh D = 1300

1 tháng 9 2017

 Câu trả lời hay nhất:  Ta có: góc A+B+C+D=360 =>C+D=150 độ 
Tính góc CED + EDC=1/2C+1/2D=1/2(C+D)=75(do phân giác) 
=>E=180-75=105 
ta có góc tạo bởi 2 tia phân giác của 2 góc kề có tổng là 90 độ (có cm trong sgk) 
nên ECF+EDF=90+80=180 độ 
=>CFD= 360-180-105=75 
Xong rồi,n\bạn lập luận chặt chẽ hơn nhé 
Hix.bài mình làm không xong lo đi làm cho người ta!!!!!!!

27 tháng 6 2023

A B C D

\(\widehat{A}+\widehat{D}=70^o+110^o=180^o\) 

=> ABCD là tứ giác nội tiếp (tứ giác có tổng 2 góc đối =180 là tứ giác nt)

\(\widehat{ABD}=\widehat{ACD}\) (góc nt cùng chắn cung AD) (1)

\(\widehat{CBD}=\widehat{CAD}\) (góc nt cùng chắn cung CD) (2)

Tg ADC cân tại D \(\Rightarrow\widehat{ACD}=\widehat{CAD}\) (3)

Từ (1) (2) (3) \(\Rightarrow\widehat{ABD}=\widehat{CBD}\)

30 tháng 7 2015

bạn tham khảo ở đây nha có mấy cách giải đấy mình chưa học đến lướp 8 nên chỉ giúp bạn tìm được thôi https://vn.answers.yahoo.com/question/index?qid=20130616064409AAyMJ8M

4 tháng 6 2018

Trên cạnh AD bạn lấy điểm E sao cho AE = AB => hai tam giác ACE và ACB bằng nhau (c.g.c) 
=> CE = CB (1) 
và góc AEC = ABC = 110 độ. 
xét tam giác CED có D = 70 đô. 
theo tính chất góc ngoài AEC = tổng hai góc trong không kề nó. Bạn dễ dàng tính được ECD = 40 độ. 
Từ đó có được góc CED = 70 độ 
=> tam giác CED cân tại C , tức là CE = CD (2) 
Từ (1) và (2) => CB = CD (đpcm)

16 tháng 7 2023

a) Vì AB//CD, ta có góc ACD = góc BCD = 180 - góc D = 180 - 60 = 120 độ.

Vì AB//CD, ta có góc ACD = góc BAD.

Vậy số đo góc A là 120 độ.

b) Gọi góc BCD là x độ.

Theo giả thiết, góc B phần góc D = 4/5, ta có:

góc B = (4/5) * góc D

= (4/5) * 60

= 48 độ.

Vì AB//CD, ta có góc BCD = góc BAD.

Vậy góc BAD = góc BCD = x độ.

Vì tứ giác ABCD là tứ giác lồi, tổng các góc trong tứ giác ABCD là 360 độ.

Ta có: góc A + góc B + góc C + góc D = 360 độ.

Vì góc D = 60 độ, góc A = 120 độ và góc B = 48 độ, ta có:

120 + 48 + góc C + 60 = 360

góc C = 360 - 120 - 48 - 60 = 132 độ.

Vậy số đo góc B là 48 độ và số đo góc C là 132 độ.

* Ib = bài 4