Trong tam giác vuông có hai cạnh góc vuông là a, b; góc đối diện với cạnh a là α ; góc đối diện với cạnh b và β và cạnh huyền là c. Hãy tìm khẳng định đúng
A. a = csin β B. a = ccos β
C. a = ctg β D. a = ccotg β
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Diện tích hai hình vuông màu xanh trong hình 1a là: \(a^2+b^2\)
- Diện tích hình vuông màu xanh trong hình 1b là: \(c^2\)
- Vậy \(a^2+b^2=c^2\)
Đáp án A
Gọi độ dài cạnh góc vuông nhỏ hơn của tam giác vuông đó là x (cm); (0 < x < 20)
Cạnh góc vuông lớn hơn của tam giác vuông có độ dài là: x + 4
Vì cạnh huyền bằng 20 cm nên theo định lý Py-ta-go ta có:
Vậy độ dài hai cạnh góc vuông của tam giác vuông đó lần lượt là: 12 cm và 12 + 4 = 16 cm
Đáp án A
Gọi độ dài cạnh góc vuông nhỏ hơn của tam giác vuông đó là x (cm); (0 < x < 20)
Cạnh góc vuông lớn hơn của tam giác vuông có độ dài là: x + 4
Vì cạnh huyền bằng 20 cm nên theo định lý Py-ta-go ta có:
Vậy độ dài hai cạnh góc vuông của tam giác vuông đó lần lượt là: 12 cm và 12 + 4 = 16 cm
Bài 1:
\(S=\dfrac{2.4\cdot1.7}{2}=1.2\cdot1.7=2.04\left(dm^2\right)\)
Bài 2:
\(S=\dfrac{24\cdot16}{2}=24\cdot8=192\left(cm^2\right)\)
a) Do tổng ba góc trong 1 tam giác bằng 180 độ nên tam giác không thể có 2 góc vuông
=> Tam giác vuông cân sẽ có 2 góc nhọn bằng nhau
=> Tam giác vuông cân thì cân tại đỉnh góc vuông.
b) Giả sử hai góc nhọn trong tam giác vuông là x, ta có:
\(\begin{array}{l}x + x + {90^o} = {180^o}\\ \Rightarrow 2x = {90^o}\\ \Rightarrow x = {45^o}\end{array}\)
Vậy tam giác vuông cân có hai góc nhọn bằng 45°.
c) Gọi góc còn lại của tam giác vuông có 1 góc nhọn bằng 45° là x, ta có:
\(x + {45^o} + {90^o} = {180^o} \Rightarrow x = {45^o}\)
Vậy tam giác vuông có một góc nhọn bằng 45° là tam giác vuông cân.
Chọn đáp án B