Cho hàm số y=f(x)= [x],x \(\varepsilon Q\)
a, tìm f(5) ; f(2\(\frac{1}{6}\)) ;f(-1,4)
b, tìm x để y (x) =0
giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P/s: Câu c sủa đề đi, như đề cũ không chứng minh được đâu
\(a)\) \(y=f\left(x\right)=4x^2-5\)
\(\Leftrightarrow f\left(3\right)=4.3^2-5=31\)
\(\Leftrightarrow f\left(-\frac{1}{2}\right)=4.\left(-\frac{1}{2}\right)^2-5=-4\)
\(b)\) \(f\left(x\right)=-1\)
\(\Leftrightarrow4x^2-5=-1\)
\(\Leftrightarrow4x^2=4\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)
\(c)\) Đặt \(f\left(x\right)=kx\Leftrightarrow-f\left(x\right)=-kx\)
Và \(f\left(-x\right)=k\left(-x\right)=-kx\)
Do đó chứng minh được \(-f\left(x\right)=f\left(-x\right)\)
4. (3/4-81)(3^2/5-81)(3^3/6-81)....(3^6/9-81).....(3^2011/2014-81)
mà 3^6/9-81=0 => (3/4-81)(3^2/5-81)....(3^2011/2014-81)=0
Câu 1:
a)
\(y=f\left(x\right)=2x^2\) | -5 | -3 | 0 | 3 | 5 |
f(x) | 50 | 18 | 0 | 18 | 50 |
b) Ta có: f(x)=8
\(\Leftrightarrow2x^2=8\)
\(\Leftrightarrow x^2=4\)
hay \(x\in\left\{2;-2\right\}\)
Vậy: Để f(x)=8 thì \(x\in\left\{2;-2\right\}\)
Ta có: \(f\left(x\right)=6-4\sqrt{2}\)
\(\Leftrightarrow2x^2=6-4\sqrt{2}\)
\(\Leftrightarrow x^2=3-2\sqrt{2}\)
\(\Leftrightarrow x=\sqrt{3-2\sqrt{2}}\)
hay \(x=\sqrt{2}-1\)
Vậy: Để \(f\left(x\right)=6-4\sqrt{2}\) thì \(x=\sqrt{2}-1\)