Cho điểm A không thuộc đường tròn (O;R), qua A vẽ 2 đường tròn d1 và d2; d1 cắt (O) tại B và C; d2 cắt (O) tại D và F. Chứng minh rằng \(AB.AC=AD.AE=\left|OA^2-R^2\right|\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét ΔBDA có
O là trung điẻm của AB
OI//BD
=>I là trung điểm của AD
ΔOAD cân tại O
mà OI là trung tuyến
nên OI vuông góc AD và OI là phân giác của góc AOD
2: Xét ΔOAC và ΔODC có
OA=OD
góc AOC=góc DOC
OC chung
Do đó: ΔOAC=ΔODC
=>góc ODC=90 độ
=>CD là tiếp tuyến của (O)
a) Tứ giác PDKI nọi tiếp đườngtròn đường kính PK.
b) Ta có \(\Delta CIK\sim\Delta CDP(g.g)\) nên \(CI.CP=CK.CD\).
c) Giả sử Q nằm trên cung nhỏ AB.
Khi đó Q là điểm chính giữa của cung nhỏ AB nên IQ là phân giác của góc AIB. Lại có IC vuông góc với IQ nên IC là phân giác ngoài của tam giác IAB.
b) Theo phương tích ta có CP . CI = CA . CB.
Lại có CK . CD = CI . CP nên CK . CD = CA . CB.
Mà C, A, B cố định và D là trung điểm của AB \(\Rightarrow\) D cố định nên K cũng cố định.
Vậy QI đi qua K cố định.
1: Xét (O) có
OI là một phần đường kính
BC là dây
I là trung điểm của BC
Do đó: OI\(\perp\)BC
Xét tứ giác OAMI có
\(\widehat{OAM}+\widehat{OIM}=180^0\)
Do đó: OAMI là tứ giác nội tiếp
hay O,A,M,I thẳng hàng
a: Ta có: ΔOAB cân tại O
mà OE là đường cao
nên OE\(\perp\)AB
Xét tứ giác OECN có \(\widehat{OEC}+\widehat{ONC}=90^0+90^0=180^0\)
nên OECN là tứ giác nội tiếp
=>O,E,C,N cùng thuộc một đường tròn
b: Xét (O) có
\(\widehat{CNA}\) là góc tạo bởi tiếp tuyến NC và dây cung NA
\(\widehat{ABN}\) là góc nội tiếp chắn cung AN
Do đó: \(\widehat{CNA}=\widehat{ABN}\)
Xét ΔCNA và ΔCBN có
\(\widehat{CNA}=\widehat{CBN}\)
\(\widehat{NCA}\) chung
Do đó: ΔCNA~ΔCBN
=>\(\dfrac{CN}{CB}=\dfrac{CA}{CN}\)
=>\(CN^2=CA\cdot CB\)
c: Xét ΔOCN vuông tại N có NH là đường cao
nên \(CH\cdot CO=CN^2\)
=>\(CH\cdot CO=CA\cdot CB\)
=>\(\dfrac{CH}{CB}=\dfrac{CA}{CO}\)
Xét ΔCHA và ΔCBO có
\(\dfrac{CH}{CB}=\dfrac{CA}{CO}\)
\(\widehat{HCA}\) chung
Do đó: ΔCHA~ΔCBO
=>\(\widehat{CHA}=\widehat{CBO}\)
mà \(\widehat{CBO}=\widehat{OAB}\)(ΔOAB cân tại O)
nên \(\widehat{CHA}=\widehat{OAB}\)