K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2019

Giải bài 2 trang 155 SGK Đại Số 10 | Giải toán lớp 10

+) Nếu k lẻ: k = 1+2m ; m ∈ Z , ta có:

Giải bài 2 trang 155 SGK Đại Số 10 | Giải toán lớp 10

Giải bài 2 trang 155 SGK Đại Số 10 | Giải toán lớp 10

Giải bài 2 trang 155 SGK Đại Số 10 | Giải toán lớp 10

5 tháng 11 2019

Trên đường tròn lượng giác,từ A(1,0) vẽ tiếp tuyến t’At với đường tròn lượng giác.

Từ B(0,1) vẽ tiếp tuyến s’Bs với đường tròn lượng giác .

Cho cung lượng giác AM có số đo α (α ≠ π/2 + kπ ). Gọi T là giao điểm của OM với trục t’At.

Gọi S là giao điểm của OM và trục s’Bs.

Khi β = α + kπ thì điểm cuối của góc β sẽ trùng với điểm T trên trục tan. Do đó

tan(α + kπ) = tanα.

Khi β = α + kπ thì điểm cuối của góc β sẽ trùng với điểm S trên trục cot. Do đó

cot(α + kπ) = cotα.

23 tháng 1 2019

+) Định nghĩa của sin α; cos α

Trên đường tròn lượng giác, xét cung AM có số đo α

Gọi H và K lần lượt là hình chiếu của M trên trục Ox, Oy.

Tung độ y = OK¯ của điểm M được gọi là sin của α : sin α = OK¯

Hoành độ x = OH¯ của điểm M được gọi là cos của α : cos α = OH¯

Trên đường tròn lượng giác trong mặt phẳng Oxy, lấy điểm A (1; 0) làm gốc.

Khi đó các cung có số đo hơn kém nhau một bội của 2π có điểm cuối trùng nhau.

Giả sử cung α có điểm cuối là M(x; y)

Khi đó với mọi k ∈ Z thì cung α + k2π cũng có điểm cuối là M.

Giải bài 1 trang 155 SGK Đại Số 10 | Giải toán lớp 10

sin α = y, sin (α + k2π) = y nên sin(α + k2π) = sinα

cos α = x, cos(α + k2π) = x nên cos(α + k2π) = cosα

8 tháng 3 2019

Chọn C.

Ta có tan α – cotα = 1 

Do  suy ra tanα < 0 nên 

Thay

 và

vào P  ta được 

18 tháng 1 2022

Vì \(\dfrac{\pi}{2}< \alpha< \pi\) \(\Rightarrow\) cos \(\alpha\) < 0

\(\Rightarrow\) cos \(\alpha\) = \(-\sqrt{1-sin^2\alpha}\) = \(-\dfrac{2\sqrt{2}}{3}\)

\(\Rightarrow\) tan \(\alpha\) = \(\dfrac{sin\alpha}{cos\alpha}=\dfrac{-\sqrt{2}}{4}\)

\(\Rightarrow\) cot \(\alpha\) = \(\dfrac{1}{tan\alpha}\) = \(-2\sqrt{2}\)

Chúc bn học tốt!

Đặt \(\tan\alpha=a;\cot\alpha=b\)

Theo đề, ta có: \(\left(a+b\right)^2-\left(a-b\right)^2\)

\(=a^2+2ab+b^2-a^2+2ab-b^2\)

\(=4ab=4\cdot\tan\alpha\cdot\cot\alpha=4\)

4 tháng 5 2021

\(sin\alpha=-\sqrt{1-cos^2\alpha}=-\dfrac{\sqrt{21}}{5}\)

\(tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{-\dfrac{\sqrt{21}}{5}}{-\dfrac{2}{5}}=\dfrac{\sqrt{21}}{2}\)

\(cot\alpha=\dfrac{1}{tan\alpha}=\dfrac{2}{\sqrt{21}}\)

28 tháng 9 2018

a, Tìm được sinα = 24 5 , tanα = 24 , cotα =  1 24

b, cosα = 5 3 , tanα = 2 5 , cotα =  5 2

c, sinα = ± 2 5 , cosα = ± 1 5 , cotα =  1 2

d, sinα = ± 1 10 , cosα = ± 3 10 , tanα = 1 3

29 tháng 4 2017

Chọn D.

 

Ta có 

Suy ra 

12 tháng 4 2017

  

Đề thi Học kì 2 Toán 10 có đáp án (Đề 3)