Cho các số a;b;c thỏa mãn \(2a=3b,5b=7c\) và \(3a-7b+5c=-30\)
Khi đó \(a+b+c=...\)
Giúp mình với mình cần gấp!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left\{980;5975\right\}\\ B=\left\{627;49137\right\}\\ C=\left\{980\right\}\)
Lời giải:
a. $A=\left\{30;33;35;50;53;55\right\}$
b. $B=\left\{80;71;62;53;44;35;26;17\right\}$
c. $C=\left\{10;21;32;43;54;65;76;87;98\right\}$
d. $D=\left\{14;25;36;47;58;69\right\}$
Giải:
a) \(A=\left\{30;33;35;50;53;55\right\}\)
b) \(B=\left\{17;26;35;44;53;62;71;80\right\}\)
c) \(C=\left\{10;21;32;43;54;65;76;87;98\right\}\)
d) \(D=\left\{14;25;36;47;58;69\right\}\)
1a) A = { 980, 5975}
b) B = { 627, 49137,756598}
c) C = { 980 }
Ta có: \(2a=3b\Rightarrow\frac{a}{3}=\frac{b}{2}\left(1\right)\)
\(5b=7c\Rightarrow\frac{b}{7}=\frac{c}{5}\left(2\right)\)
Từ 1 và 2 \(\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)
\(\Rightarrow\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}=\frac{3a-7b+5c}{63-98+50}=\frac{-30}{15}=-2\)
\(\Rightarrow\frac{a}{21}=-2\Rightarrow a=-42\)
\(\frac{b}{14}=-2\Rightarrow b=-28\)
\(\frac{c}{10}=-2\Rightarrow c=-20\)
Vậy \(a+b+c=-42-28-20=-90\)
Cảm ơn bạn nha!